Specific resistance of conductors

Similar documents
Active loads in amplifier circuits

Voltage, Current, and Resistance

Simultaneous equations for circuit analysis

Algebraic substitution for electric circuits

Algebraic substitution for electric circuits

EE301 RESISTANCE AND OHM S LAW

Decibel measurements

Parallel DC circuits


Trade of Electrician. Resistance Network Measurement

Algebraic equation manipulation for electric circuits

Electric Current & DC Circuits

Chapter 03. Resistance. Resistance of Conductors. Type of Material resistivity (Ω m) Type of Material. Length / Area. Resistance Formula

Basic algebra and graphing for electric circuits

Basic Electricity. Unit 2 Basic Instrumentation

CHAPTER 1 ELECTRICITY

ELECTRICITY UNIT REVIEW

Algebra Based Physics

SYSTEMS OF UNITS. 1 st Class Basic of Electrical Engineering. Current and Voltage

DC metrology. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

INTRODUCTION TO ELECTRONICS

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

PHYSICS FORM 5 ELECTRICAL QUANTITES

Calculate the total resistance of this combination. (3)

Introduction to Electrical Theory

Resistivity and Temperature Coefficients (at 20 C)

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?

Name Date Time to Complete

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

ELECTRICAL THEORY ESSENTIAL FOR JOURNEYMAN AND MASTER/CONTRACTOR LICENSING EXAMS CHAPTER

Circuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127

Electricity and Magnetism Module 4 Student Guide

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Capacitance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron

Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

Digital logic signals

Digital logic signals

Chapter 4. Chapter 4

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Circuits. Circuits. Electric Current & DC Circuits. current and circuits presentation March 22, How to Use this File.

Electric Current. Volta

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Ohm's Law and Resistance

This is a sample of my study guide for the FCC Technician Class Amateur Radio license. This sample contains about 10% of the full book.

Chapter 3. Chapter 3

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Gas discharges. Current flow of electric charge. Electric current (symbol I) L 26 Electricity and Magnetism [3] examples of electrical discharges

Test Review Electricity

Superposition theorem

Nama :.. Kelas/No Absen :

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

An Introduction to Electricity and Circuits

Current and Resistance

RADIO AMATEUR EXAM GENERAL CLASS

Circuit Analysis and Ohm s Law

Unit 6 Current Electricity and Circuits

Resistance Learning Outcomes

ET 162 Circuit Analysis. Current and Voltage. Electrical and Telecommunication Engineering Technology. Professor Jang

Properties of Electric Charge

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

670 Intro Physics Notes: Electric Current and Circuits

Flow Rate is the NET amount of water passing through a surface per unit time

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

Voltage Current and Resistance

Electric Currents and Simple Circuits

Introduction to Electricity

Electricity Review completed.notebook. June 13, 2013

Unit Two Worksheet Matter and Energy WS PS U2

What are the two types of current? The two types of current are direct current and alternating current.

Voltaic Cell Data for Five Metals [voltage (V) & current (I); T = Theoretical Voltage] Cathode (positive {+} electrode)

Electron Theory. Elements of an Atom

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Magnets attract some metals but not others

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

CHAPTER INTRODUCTION TO ELECTRIC CIRCUITS. C h a p t e r INTRODUCTION

Basic Electricity Video Exam

- Memorize the terms voltage, current, resistance, and power. - Know the equations Ohm s Law and the Electric Power formula

Unit 3 BLM Answers UNIT 3 BLM 3-46

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Conceptual Physical Science 6 th Edition

MITES Middle School Introduction To Engineering Systems

This week. 3/23/2017 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer

DC circuits, Kirchhoff s Laws

(b) State the relation between work, charge and potential difference for an electric circuit.

EXPERIMENT 12 OHM S LAW

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Logarithms for analog circuits

Transcription:

Specific resistance of conductors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1

Question 1 Given two lengths of metal wire, which one will have the least electrical resistance: one that is short, or one that is long? Assume all other factors are equal (same metal type, same wire diameter, etc.). file 00157 Answer 1 Notes 1 The short wire will have less electrical resistance than the long wire. Many analogies exist to express this concept: water through a pipe, compressed air through a hose, etc. Which pipe or hose is less restrictive: the short one or the long one? 2

Question 2 Given two lengths of solid metal wire with round cross-sections, which one will have the least electrical resistance: one that is small-diameter, or one that is large-diameter? Assume all other factors are equal (same metal type, same wire length, etc.). file 00158 Answer 2 Notes 2 The large-diameter wire will have less electrical resistance than the small-diameter wire. Many analogies exist to express this concept: water through a pipe, compressed air through a hose, etc. Which pipe or hose is less restrictive: the skinny one or the fat one? 3

Question 3 What is specific resistance, symbolized by the Greek letter rho (ρ)? file 00156 Answer 3 Specific resistance is a measure of how resistive any particular substance is, relative to its length and cross-sectional area. Notes 3 Ask your students, Why is it important to have a quantity called specific resistance? Why don t we just compare the resistivity of different substances in regular units of ohms? 4

Question 4 Write a single equation relating the resistance, specific resistance, length, and cross-sectional area of an electrical conductor together. file 00159 Answer 4 R = ρ l A Where, R = Resistance, measured along the conductor s length ρ = Specific resistance of the substance l = Length of the conductor A = Cross-sectional area of the conductor Follow-up question: algebraically manipulate this equation to solve for length (l) instead of solving for resistance (R) as shown. Notes 4 A beneficial exercise to do with your students is to analyze this equation (and in fact, any equation) qualitatively instead of just quantitatively. Ask students what will happen to R if ρ increases, or if l decreases, or if A decreases. Many students find this a more challenging problem than working with real numbers, because they cannot use their calculators to give them qualitative answers (unless they enter random numbers into the equation, then change one of those numbers and re-calculate but that is twice the work of solving the equation with one set of numbers, once!). 5

Question 5 Examine the following specific resistance table for various metals: Metal type ρ in Ω cmil / ft @ 32 o F ρ in Ω cmil / ft @ 75 o F Zinc (very pure) 34.595 37.957 Tin (pure) 78.489 86.748 Copper (pure annealed) 9.390 10.351 Copper (hard-drawn) 9.810 10.745 Copper (annealed) 9.590 10.505 Platinum (pure) 65.670 71.418 Silver (pure annealed) 8.831 9.674 Nickel 74.128 85.138 Steel (wire) 81.179 90.150 Iron (approx. pure) 54.529 62.643 Gold (99.9 % pure) 13.216 14.404 Aluminum (99.5 % pure) 15.219 16.758 Of the metals shown, which is the best conductor of electricity? Which is the worst? What do you notice about the resistivity of these metals as temperature is increased from 32 o F to 75 o F? file 03386 Answer 5 Here is the same table, the order re-arranged to show resistivity from least to greatest: Metal type ρ in Ω cmil / ft @ 32 o F ρ in Ω cmil / ft @ 75 o F Silver (pure annealed) 8.831 9.674 Copper (pure annealed) 9.390 10.351 Copper (annealed) 9.590 10.505 Copper (hard-drawn) 9.810 10.745 Gold (99.9 % pure) 13.216 14.404 Aluminum (99.5 % pure) 15.219 16.758 Zinc (very pure) 34.595 37.957 Iron (approx. pure) 54.529 62.643 Platinum (pure) 65.670 71.418 Nickel 74.128 85.138 Tin (pure) 78.489 86.748 Steel (wire) 81.179 90.150 Notes 5 The data for this table was taken from table 1-97 of the American Electrician s Handbook (eleventh edition) by Terrell Croft and Wilford Summers. It may come as a surprise to some students to find that gold is actually a worse conductor of electricity than copper, but the data doesn t lie! Silver is actually the best, but gold is chosen for a lot of microelectronic applications because of its resistance to oxidation. 6

Question 6 What is the electrical resistance of a 12-gauge copper wire, 500 feet long, at room temperature? file 00165 Answer 6 Notes 6 Wire resistance = 0.7726 Ω Ask your students to share their sources for data: values of ρ, cross-sectional area, etc. 7

Question 7 A spool holds an unknown length of aluminum wire. The size of the wire is 4 AWG. Fortunately, both ends of the wire are available for contact with an ohmmeter, to measure the resistance of the entire spool. When measured, the wire s total resistance is 0.135 Ω. How much wire is on the spool (assuming the spool is at room temperature)? file 00485 Answer 7 Notes 7 353.51 feet This question illustrates another practical application of specific resistance calculations: how to determine the length of wire on a spool. The amount of resistance in this example is quite low, being a mere fraction of an ohm. Ask your students what kinds of problems they might encounter trying to measure such a low resistance with accuracy. Would the typical errors incurred in such a low-resistance measurement tend to make their calculation of length be excessive, or too low? Why? 8

Question 8 The cross-sectional dimensions of a copper busbar measure 8 cm by 2.5 cm. How much resistance would this busbar have, measured end-to-end, if its length is 10 meters? Assume a temperature of 20 o Celsius. Copper 10 m 8 cm file 00486 Answer 8 Notes 8 83.9 µω 2 cm This question is a good review of the metric system, relating centimeters to meters, and such. It may also be a good review of unit conversions, if students choose to do their resistance calculations using English units (cmils, or square inches) rather than metric. Students may be surprised at the low resistance figure, but remind them that they are dealing with a solid bar of copper, over 3 square inches in cross-sectional area. This is one big conductor! 9

Question 9 Calculate the end-to-end resistance of a 20 meter length of copper wire with a diameter of 0.05 cm. Use 1.678 10 6 Ω cm for the specific resistance of copper. file 01483 Answer 9 Notes 9 1.709 Ω Nothing to comment on here just a straight-forward calculation of resistance. Students need to be careful of the centimeter dimension, though! 10

Question 10 Calculate the amount of power delivered to the load resistor in this circuit: R wire = 5.2 Ω 300 VDC R load = 500 Ω R wire = 6.0 Ω Also, calculate the amount of power that would be delivered to the load resistor if the wires were superconducting (R wire = 0.0 Ω). file 01724 Answer 10 P load 170 Watts (with resistive wire) P load = 180 Watts (with superconducting wire) Follow-up question: Compare the direction of current through all components in this circuit with the polarities of their respective voltage drops. What do you notice about the relationship between current direction and voltage polarity for the battery, versus for all the resistors? How does this relate to the identification of these components as either sources or loads? Notes 10 Not only is this question good practice for series circuit calculations (Ohm s and Joule s Laws), but it also introduces superconductors in a practical context. 11

Question 11 Suppose a power system were delivering AC power to a resistive load drawing 150 amps: I = 150 A R wire = 0.1 Ω Load AC voltage source 240 VAC R wire = 0.1 Ω Calculate the load voltage, load power dissipation, the power dissipated by the wire resistance (R wire ), and the overall power efficiency, indicated by the Greek letter eta (η = P load P source ). E load = P load = P lines = η = Now, suppose we were to re-design both the generator and the load to operate at 2400 volts instead of 240 volts. This ten-fold increase in voltage allows just one-tenth the current to convey the same amount of power. Rather than replace all the wire with different wire, we decide to use the exact same wire as before, having the exact same resistance (0.1 Ω per length) as before. Re-calculate load voltage, load power, wasted power, and overall efficiency of this (higher voltage) system: I = 15 A R wire = 0.1 Ω Load AC voltage source 2400 VAC R wire = 0.1 Ω E load = P load = P lines = η = file 01723 12

Answer 11 240 volt system: E load = 210 volts P load = 31.5 kw P lines = 4.5 kw η = 87.5% 2400 volt system: E load = 2397 volts P load = 35.96 kw P lines = 45 W η = 99.88% Notes 11 An example like this usually does a good job clarifying the benefits of using high voltage over low voltage for transmission of large amounts of electrical power over substantial distances. 13

Question 12 The efficiency (η) of a simple power system with losses occurring over the wires is a function of circuit current, wire resistance, and total source power: R wire1 Source Load R wire2 A simple formula for calculating efficiency is given here: η = P source I 2 R P source Where, P source = the power output by the voltage source, in watts (W) I = the circuit current, in amperes (A) R = the total wire resistance (R wire1 + R wire2 ), in ohms (Ω) Algebraically manipulate this equation to solve for wire resistance (R) in terms of all the other variables, and then calculate the maximum amount of allowable wire resistance for a power system where a source outputting 200 kw operates at a circuit current of 48 amps, at a minimum efficiency of 90%. file 03255 Answer 12 Notes 12 R = P source ηp source I 2 The maximum allowable (total) wire resistance is 8.681 Ω. A common mistake for students to make here is entering 90% as 90 rather than as 0.9 in their calculators. 14

Question 13 What size (gauge) of copper wire is needed in this circuit to ensure the load receives at least 110 volts? 1200 feet Load 10 Ω 120 VDC file 00166 Answer 13 Notes 13 #6 gauge copper wire comes close, but is not quite large enough. #5 gauge or larger will suffice. Several steps are necessary to solve this problem: Ohm s Law, algebraic manipulation of the specific resistance equation, and research into wire sizes. Be sure to spend adequate time discussing this problem with your students! The concept of a generic load is any component or device that dissipates electrical power in a circuit. Often, generic loads are symbolized by a resistor symbol (a zig-zag line), even though they might not really be a resistor. 15

Question 14 A strain gauge is a type of sensing device widely used in the aerospace industry, for testing of vehicles and mechanical components. Explain what a strain gauge does, and how it functions. Strain gauge file 00484 Answer 14 A strain gauge converts micro-mechanical motions ( strain ) into electrical resistance changes. Typically, strain gauges are used to measure the stretching, compressing, and twisting of metal components under stress. Notes 14 Ask your students to relate their answers to the illustration shown in the question. How does that strange-looking device actually measure strain? How does its resistance change, and why? 16

Question 15 How does the conductance (G) of a conductor relate to its length? In other words, the longer the conductor, the (fill-in-the-blank) its conductance is, all other factors being equal. file 00487 Answer 15 Conductance decreases as length increases, all other factors being equal. Follow-up question: how does conductance (G) mathematically relate to resistance (R), and what is the unit of measurement for conductance? Notes 15 There are two units of measurement for conductance: the old unit (which makes perfect sense, even though your students may laugh at it, at first), and the new unit (named after a famous electrical researcher). Make sure your students are familiar with both. 17