Back to Sugars: Enzymatic Synthesis

Similar documents
Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Stereoselective reactions of enolates

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Stereoselective reactions of the carbonyl group

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Stereoselective Organic Synthesis

Stereoselective reactions of enolates: auxiliaries

Suggested solutions for Chapter 41

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Asymmetric Catalysis by Lewis Acids and Amines

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

Mechanistic Studies of Proline-Catalyzed Reactions

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Total synthesis of Spongistatin

PROLINE-CATALYZED DIRECT ASYMMETRIC ALDOL AND MANNICH REACTIONS. Reported by Mirth Hoyt October 31, 2005

Midterm Exam #1 /280 CHEM 6352 Fall 2011

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Chiral Brønsted Acid Catalysis

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

Chiral Catalysis. Chiral Catalyst. Substrate. Chiral Catalyst

Answers To Chapter 7 Problems.

Additions to Metal-Alkene and -Alkyne Complexes

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions

Synthesis of Abyssomicin C. Marie-Caroline Cordonnier Litterature Review 23/01/2009

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Homogeneous Catalysis - B. List

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15

Synthesis of Resorcinylic Macrolides

Rhodium Catalyzed Alkyl C-H Insertion Reactions

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

Overview of Synthesizing Merrilactone A

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Aldehydes and Ketones : Aldol Reactions

Asymmetric Nucleophilic Catalysis

Stereocontrolled organocatalytic synthesis of prostaglandin PGF 2 in seven steps

Development of Small Organic Molecules as Catalysts for Asymmetric

Use of Cp 2 TiCl in Synthesis

Classics in Tetrahedron Letters

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Short Literature Presentation 10/4/2010 Erika A. Crane

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

B X A X. In this case the star denotes a chiral center.

VI. Metal alkyls from oxidative addition / insertion

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

"-Amino Acids: Function and Synthesis

REACTION AND SYNTHESIS REVIEW

Synthesis of the Stenine Ring System from Pyrrole

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H

Carbenes and Carbene Complexes I Introduction

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Keywords: amination ate complexes carbomagnesiation carbometalation Grignard reagents homocoupling magnesates magnesium compounds metalation

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

2.222 Practice Problems 2003

Tips for taking exams in 852

Lecture 1 ADVANCED SYNTHESIS Stereochemistry Introduction

Chiral Brønsted Acid Catalysis

CHEM 330. Final Exam December 8, 2010 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

Enantioselective Protonations

Synthesis of Amphidinolide X and an Exploration of Key Reactions

ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Asymmetric Organocatalysis Using Chiral Amines

CEM 852 Final Exam. May 6, 2010

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Chapter 8 Reactions of Alkenes

Advanced Organic Chemistry

Stereoselective Organic Synthesis

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

Introduction to Synthesis: Design (CHE686) Spring 2015 Exam #1 3/6/15

Use of the non-aldol aldol process in the synthesis of the C1 C11 fragment of the tedanolides: use of lactol ethers in place of tetrahydrofurans

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

Total Synthesis of (+)-Gelsemine. Xuan Dong group seminar 12/19/2012

Chapter 7. Alkenes: Reactions and Synthesis

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions

Catalytic Asymmetric Total Syntheses of Quinine and Quinidine

PhD research with Prof. Lutz H. Gade at the Univ. of Strasbourg. Postdoc in 2003 with Andreas Pfaltz (Basel Switzerland)

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain

Exam 1 (Monday, July 6, 2015)

Chiral Supramolecular Catalyst for Asymmetric Reaction

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

Chemistry Final Examinations Summer 2006 answers

Enolates: Z(O,R) (O,R)- and E(O,R) (O,R)-enolates

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl)

Supplementary Figure 1. Traditional synthesis of carbohydrates. I. Regioselective protection

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck!

Chem 263 Nov 19, Cl 2

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Transcription:

Back to Sugars: Enzymatic Synthesis Zhensheng Ding ov. 04 orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752 orthrup, A. B. and MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799 orthrup, A. B.; M angion, I. K.; ettche, F.; M acm illan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152 List, B. Tetrahedron 2002, 58, 5573 Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B. Science 1983, 220, 949 List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395-2396

Introduction to exoses Play vital roles in biological process - signal transduction, cognition, immune response Synthetically challengeable to chemistry - 4 stereocenters with 5 similar hydroxyl groups

Common Methods toward Sugars Sharpless s reiterative two-carbon extension cycle - Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B. Science 1983, 220, 949 - Takeuchi, M; Taniguchi, T; gasawara, K. Synthesis 1999, 1999, 341 etero-diels-alder reactions - Danishefsky, S. J.; Maring, C. J. J. Am. Chem. Soc. 1985, 107, 7761 - Boger, D. L.; Robarge, K. D. J. rg. Chem. 1988, 53, 5793 - Tietze, L. F.; Montenbruck, A.; Schneider, C. Synlett. 1994, 1994, 509 - Bataille, C. et al., J. rg. Chem. 2002, 67, 8054 Iterative syn-glycolate aldol strategy - Davies, S. G.; icholson, R. L.; Smith, A. D. Synlett. 2002, 2002, 1637

Sharpless s Two-carbon Extension Cycle: the Idea Key step: Sharpless asymmetric epoxidation Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B. Science 1983, 220, 949

Completion of the 1st Cycle Ph Ph Ph Ph LA / AlCl 3 1 : 4 Bh [ ] 83 % 56 % Bh Bh Me Me 3 SPh 71 % SPh Bh 1) PhS a 1) mcpba S C 3 C 2 Bh 2) (C 3 C) 2 92 % yield > 90 % ee S SPh Ac Bh Pummerer rearrangement 2 Ac 2 L - DET Ti ( - i - Pr ) 4 DIBAL - - 78 o C Ac C C Ac ab 4 Bh Bn Bn 84 % 93 % S S R S R R Ac 2 1 R Ac 1 1 Ac 1 4 5 Ph 3 P 1) 6 2) ab 4 Bh 88 % E / Z = 20 : 1 Ph 3 P 1) 7 2) ab 4 Bh 91 % E / Z = 20 : 1 Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B. Science 1983, 220, 949

Completion of the 2nd Cycle to 8 exoses 6 7 Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B. Science 1983, 220, 949

Modifications to Sharpless s Strategy C C C 1) oxidative ring-expansion 2) acid cyclization P C C C 25 R AD-Mix reagent exoses C C 24 R The key step: C C 24 TBS mcpba C C pts TBS TBS C C 25 69% from 24 Takeuchi, M; Taniguchi, T; gasawara, K. Synthesis 1999, 1999, 341

Boger s etero-diels-alder Reactions toward exoses Boger, D. L.; Robarge, K. D. J. rg. Chem. 1988, 53, 5793

Me Bz TBDMS Me BM ther etero-diels-alder Reactions toward exoses Ce(Ac) 3 -BF 3. Et2-78 o C Bz Me BM Ac Ac Ac Ac 45% conversion, single isomer Tunicamycins 35 36 37 Danishefsky, S. J.; Maring, C. J. J. Am. Chem. Soc. 1985, 107, 7761 Al -35 Bzl o Et CX Et Et C and DCM Ac Bzl Ac 97% endo/ exo: >50:1 27 Et 26 28 29 30 Tietze, L. F.; M ontenbruck, A.; Schneider, C. Synlett. 1994, 1994, 509 R 50 o R Me C xidation Deprotection Reducti on 12kbar EtC EtC Me Me 40-69% endo/ exo: >99:1 (D, L)-mannose 32 31 33 34 Bataille, C. et al., J. rg. Chem. 2002, 67, 8054

Iterative syn-glycolate Aldol Strategy P 1) Glycolate Aldol ) Protect R R R R 38 39 DIBAL- Cleavage R P R 40 Iterative Glycolate Aldol 42 Cleavage Deprotection R P R R 41 R Bn Bn Et2BTf, ipr2et BnC 2 C TF, -78 o C 43 44 R Bn Bn Bn 73%, 94% d.e. R= R=TBDMS 90% 1) DIBAL, DCM 2) K 2 C 3, Me, 2 Et2BTf ipr2et TF, -78 o C TBDMS Bn Bn 45 54% Bn Bn 48 65% 1) DIBAL, DCM 2) 2, Pd/C EtAc, Et Bn Bn 47 TBAF Ac, TF Bn 98% TBDMS Bn Bn Bn Bn 63%, >95% d.e. 46 Davies, S. G.; icholson, R. L.; Smith, A. D. Synlett. 2002, 2002, 1637

Disadvantages and Advantages of the ld Methods Disadvantages: Require protection-group manipulations eed for iterative oxidation-state adjustment Long synthetic pathways Advantages: exoses can be independently derivatized ydroxyl groups of hexoses are protected ydroxyl groups of hexoses are chemically discriminated Ready to couple with other sugars to produce polysaccharides and other derivatives Can hexoses be synthesized more efficiently by such de novo methods?

The Idea: L-Proline Catalyzed Cross Aldol Reactions Both steps are not practically proved Product of step 1 must be inert to further aldol orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752

First Proline-catalyzed Direct Asymmetric Aldol Reactions - Breakthrough + R 30mol% L-Proline DMS R R= Ar, "unbrached Alkyl + R 30mol% L-Proline DMS 22-94% yield 36-77% ee R R= "brached Alkyl 63-97% yield 84-99% ee + R 30mol% L-Proline DMS R 38-95% yield 67-99% ee 1.5:1-20:1 dr ot require the pregeneration of enolates or enolate equivalents Stereoselectivity is usually good ucleophilic partners are acetone and a-hydroxyl acetone Stereoselectivity is substrate-sensitive with a-brached alkyl aldehydes give better e.e.s. List, B. Tetrahedron 2002, 58, 5573 List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395-2396

Features of Proline as Catalyst R 3 2 R 3 ucleophilic attack ydrolysis 51 R 3 R1 47 Lewis base rigidity back bones R 1 50 Dehydration Bronst acid R 3 2 48 Deprotonation 1) Bifunctional catalyst with increase lewis basicity and rigid back bones 2) ontoxic, inexpensive, readily available in both enantiomeric forms 3) o prior modification of carbonyls 4) Water soluble 5) o metal required 49 M 52 pen book structure List, B. Tetrahedron 2002, 58, 5573 List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395-2396

Direct Enantioselective Cross-Aldol of Aldehydes Elusive Transformations X + Y enantioselective catalyst X X X Y Y Y Y X aldehyde Polymer onequivalent aldehydes must selectively partition into two discrete components - nucleophilic donor and electrophilic acceptor The propensity of aldehydes to polymerize Can proline be used for direct enantioselective cross-aldol reaction of aldehydes? 2 + 10mol% catalyst DMF, 4 o C 53 54 80% yield, 4:1 anti: syn, 99%ee orthrup, A. B. and M acmillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799

First Proline-catalyzed Direct Asymmetric Cross-Aldol Reactions of Aldehydes a) Good yields with excellent ees b) Tolerate a large range of substrates c) Aldehyde donors must be added slowly d) Lower catalyst loadings and shorter reaction time compared with ketone substrates e) Scalable For sugar synthesis: a-oxyaldehydes as substrates: X + Y X X aldol 1 aldol 2 X X X X X 55 56 57 58 Y orthrup, A. B. and M acmillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799

Step 1 toward Sugar: Direct Asymmetric Aldol Reactions of xyaldehydes 1) Greatly affected by electronic nature of oxyaldehydes 2) Bulky aldehydes with a-silyloxy group can work 3) Products are protected forms of naturally occurring sugar erythrose 4) Products are nonreactive in aldol union orthrup, A. B.; M angion, I. K.; ettche, F.; M acm illan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152

Direct Asymmetric Aldol Reactions of xyaldehydes with Alkyl Aldehydes Glycoaldehydes: 1) Electrophile when a-methylene exists 2) uceophile when carbonyl is next to a-methine group orthrup, A. B.; M angion, I. K.; ettche, F.; M acm illan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152

Step 2 toward Sugar: Metal Catalyzed Carbohydrate Construction X X 59 TMS + Y LA aldol 2 X X X 60 Y Effects of solvent and LA orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752

Structural Variation: A Lot Sugars 1) Quick construct polysaccharides 2) Broad diversification of subs. at C4 & C6 of sugars 3) Unnatural sugar synthesis with heteroatoms X X 59 TMS + Y LA aldol 2 X X X 60 Y orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752

A Little Extension: Enzyme Catalyzed Aldol Reaction -Aldolase I and Aldolase II 1) Aldolase I utilize an enamine based mechanism 2) Aldolase II uses zinc cofactor 3) ow Aldolase I works? offmann, T.; Barbas III, C. F. et al J. Am Chem. Soc. 1998, 120, 2768

A Little Extension: Proline, An Aldolase I mimics ucleophilic attack R1 R 2 47 Dehydration 2 48 R 3 Deprotonation 2 ydrolysis R 3 51 R 3 50 R 3 49 Proline, the simplest enzyme E.. Jacobsen M ovassaghi, M.; Jacobsen, E.. Science 2002, 298, 1904

Proline- A Universal Enzyme? ucleophilic attack R1 Dehydration 2 E ydrolysis 2 R1 * E Electrophilic attack Deprotonation E + = L-Proline R 3 R 4 R R 3 R 4 And More... R 4 R 3 R R 4 R 3 Aldol reaction Manich reaction E + R 3 Ph EWG R 3 EWG Ph Michael addtion "-Aminoxylation reaction List, B. Tetrahedron 2002, 58, 5573 M erino, P.; Tejero, T. Angew. Chem. Int. Ed. Engl. 2004, 43, 2995

Summary The strategy for the synthesis of differentially protected hexoses provides rapid enantioselective access to key building blocks in saccharide and polysaccharide synthesis. The approach efficiently yields isotopic and functional variants of the hexoses that have not been readily accessible for pharmaceutical study. Proline is a bifunctional catalyst that is efficient for many transformations