Propylene Epoxidation using Titanium-containing Zeolite Catalysts

Similar documents
Temperature Control in Autothermal Reforming Reactor

The Study of Structure Design for Dividing Wall Distillation Column

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Figure S1 XRD patterns of (a) Ti-MSE-A, (b) Ti-MSE-A-cal, (c) TS-1, (d) Ti-MWW, and (e) Ti-BEA.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Effect of Precipitation on Operation Range of the CO 2

Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

History and Status of the Chum Salmon Enhancement Program in Korea

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES

Chapter 2 Synthesis of Ti-MWW Zeolite

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Surface Reaction Modeling for Plasma Etching of SiO 2

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (speek/nafion): Effect of Binder Content

A novel titanosilicate with MWW structure Catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxidesw

Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

A test reaction for titanium silicalite catalysts

Oxydation sélective des composés organiques par H 2 O 2 catalysée par xerogels mésoporeux SiO 2 -TiO 2

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

CONVERSION OF ETHANOL TO OLEFINS OVER HZSM-5 CATALYSTS

Chlorohydrination of Allyl Chloride with HCl and H 2 O 2 to Produce. Dichloropropanols Catalyzed by Hollow TS-1 Zeolite

Agnieszka Wróblewska, Grzegorz Wójtowicz

A L A BA M A L A W R E V IE W

Catalytic Activity of TS-1 on the Hydroxylation of Benzene and Toluene with Hydrogen Peroxide in a Bubble Reactor

Photodecomposition of Water Catalyzed by Zr- and Ti-MCM-41

Acetylene hydrochlorination over 13X zeolite. catalyst at high temperature

Selective O-Alkylation Reaction of Hydroquinone with Methanol over Cs Ion-Exchanged Zeolites

Two dimensional zeolites in catalysis

Supporting Information

Physical Properties and Bifunctional Catalytic Performance of Phosphate Vanadium Impregnated Silica Titania Aerogel

Babak Karimi* and Majid Vafaeezadeh

P a g e 5 1 of R e p o r t P B 4 / 0 9

Xiufang Chen, Jinshui Zhang, Xianzhi Fu, Markus Antonietti, and Xinchen Wang*

The effect of phase transition of methanol on the reaction rate in the alkylation of hydroquinone

Catalytic epoxidation of propene with H 2 O-O 2 reactants on Au/TiO 2

A New Redox Strategy for Low-Temperature Formation of Strong Basicity on Mesoporous Silica

Solvent-free Synthesis of Zeolites from Solid Raw Materials

Template-Free Synthesis of Beta Zeolite Membranes on Porous α-al 2 O 3 Supports

Supporting Information

Supports, Zeolites, Mesoporous Materials - Chapter 9

Supporting Information. SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

CHAPTER 1 INTRODUCTION

Catalytic mechanism and reaction pathway of acetone ammoximation to acetone oxime over TS-1

Supplementary Information for

Precious Metal-free Electrode Catalyst for Methanol Oxidations

A novel Ag 3 AsO 4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Direct synthesis of mordenite from kaolin and rice husk ash

Research on Direct Epoxidation of Propylene over Modified Au/Ts-1. Catalysts. Lina Wang1, a

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Supporting Information

Supporting Information

Electronic Supplementary Information

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Aviation Fuel Production from Lipids by a Single-Step Route using

Supplementary Information

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =

Supporting Information. for. A Sustainable Protocol for the Spontaneous Synthesis of Zinc-Glutamate. Wet Conditions

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Supporting Information

Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins

Synthesis of highly b-oriented zeolite MFI films by suppressing. twin crystal growth during the secondary growth

Supplementary Information. Fluoride-free synthesis of Sn-BEA catalyst by dry gel conversion

T h e C S E T I P r o j e c t

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol

CHAPTER 4: CATALYTIC PROPERTIES OF ZSM-5 ZEOLITES AND CUBIC MESOPOROUS MATERIALS

Supporting information

Bimetallic ruthenium-copper nanoparticles embedded in. mesoporous carbon as an effective hydrogenation catalyst

Electronic Supplementary Information. Direct synthesis of H 2 O 2 catalyzed by Pd nanoparticles encapsulated in multi-layered

Preparation of titanium-containing zeolites with MEL structure from B-ZSM-11 and their characterization

Electronic Supplementary Information

Hydroxyapatite Foam as a Catalyst for Formaldehyde Combustion at. Room Temperature

Supplementary Figure S1: Solution NMR spectra for D-glucose with a 4:1 sugar:sb molar ratio in H 2 O. a) 13 C NMR of D-(1-13 C)glucose, b) 13 C NMR

Advanced techniques for characterization of heterogeneous catalysts

Electronic Supplementary Information. Alcohols

Propylene: key building block for the production of important petrochemicals

Sacrifical Template-Free Strategy

Effect of Acid Treatment on Silica-Titania Aerogel as Oxidative-Acidic Bifunctional Catalyst

Supporting Information

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Electronic Supplementary Information (ESI)

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

CHEM 107 (Spring-2005) Exam 3 (100 pts)

Heterogeneously catalyzed selective aerobic oxidative cross-coupling of terminal alkynes and amides with simple copper(ii) hydroxide

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron double oxide catalyst

Atom-Economical Synthesis of High Silica CHA Zeolite

Supporting Information

Supporting Information. Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 121-128 Š l oj mš { mk i m qçm kçmq Ço Çg p 402-701 p}e n 253 (2005 10o 13p r, 2006 1o 11p }ˆ) Propylene Epoxidation using Titanium-containing Zeolite Catalysts Han-Ju Ban, Kyu-Yong Lee, Joong-Ki Lee, Sung-Taik Chung and Wha-Seung Ahn Department of Chemical Engineering, Inha university, 253, Yonghyun-dong, Nam-gu, Inchon 402-751, Korea (Received 13 October 2005; accepted 11 January 2006) k Žˆ o rm p TS-1 Ti-MCM-22 pn l r l e pp mp, pl, p p p k,, p m, k, n l r s m. TS-1p n p t ps (45 o C, 7 atm, 0.5 g catalyst, 2.5 wtí H 2, ˆm n, 1,000 rpm )l 95Í p p H 2 r p 94Í p p (propylene oxide, PO) ˆ lp pl. k Š p (acetonitrile) n l p e p Ti-MCM-22 99Íp H 2 r p 100Íl r ˆ p, k l n pp m. h Abstract Propylene epoxidation by H 2 (30Í aqueous) as oxidant was studied in a semi-batch reactor using TS-1 catalyst: Effects of reaction temperature, time, pressure, solvent, catalyst and H 2 concentration on H 2 conversion (limiting reagent) and product distribution were investigated. Potential inhibition by propylene oxide on the epoxidation rate was also examined. Ti-MCM-22 with MWW zeolytic structure was found to exhibit better performance than TS-1 with MFI structure, provide that a proper choice of solvent(acetonitrile) is made. Key words: Propylene, Propylene Oxide, Epoxidation, TS-1, Ti-MCM-22 1. p lrp k n t ~p n ˆp ~p polyol rsl n vp. p v p p hydroperoxide epichlorohydrinp pn l e pp rs v o p r pn, p p rr p l, ~ rl ep vt l m. pm l r n p l e p r PO rp (Scheme 1 s), MFI(mobil five) s Žˆ o rm p titanium silicalite-1(ts-1) m p s l n l e p l [1, 2]. Clerici [3]p TS-1 p k s p m p l e pl p n p }p m. ˆm/ n pn l 40 Cl p p o 90 min p k 90Íp lp, 97Íp PO ˆ To whom correspondence should be addressed. E-mail: whasahn@inha.ac.kr ll. Propylene glycol(pg) pp monomethyl ether(pm) tn pl. Thiele Roland[4] p p tp o k m p ~ mp, t p Na 2 SO 4 k p NaH 2 PO 4 p lp PO ˆ p m. p p TS-1 l defect q p e p rp qn l p, p rp pr m Scheme 1. Propylene epoxidation reaction path and corresponding products using TS-1 catalyst and H 2. 121

122 tëp nëpt Ër ˆËk d p nkp t eˆ p m. Chen [5]p TS-1, Ti /Si xerogel, Ti-MCM-41 ˆ k eˆ ZSM-5l TiCl 4 } p peˆ(ti- ZSM-5) Žˆ o 4 v rs l p l e pl rn m. m kl pp v mp, p r pp p TOF m. mv TS-1 Ti-ZSM-5 p p ˆ lp, ~ op Žˆ q m s t p (hyrophobicity)p pl tn p p l. Ti-ZSM-5 qs k l p r p l PO diol ether t l. pm p v l p v v PO ˆ p r m, p n p ˆm n l pp v. p 550 Cl } p o mv, p Žˆ p p k n p m. Li [6]p e k n TS-1 vv~ m, k q~p rp p l POp pp sq l pp ˆ p PG p PMp o p., p vv~ n l TS-1p k spray coatingeˆ e rs l PO l n m, p p p v e l vv p PO ˆ p pp ˆ l. rqp wp diffusion POl PG/PMp p l p p r pp lp, POp pp l pp plp rp v r POp ˆ l l m., PO rl pl r p o p vrrp n el TS-1l ~ l m p ~ in-situ rs l pl n q p p l l [7-10]. p p t op l, anthrahydroquinone(ahq)p l Œp l m AHQ p l pn TS-1 p l e e PO l. m p ~ p peˆ p n v TS-1p po n,. k pl p n v n Žˆ o rm p p l. t q t n p q~ Ti-MCM-22 p, MCM-22 rm p q~[11-13] 12-membe- red ring(mr) 10-membered ring(mr)p 3 o s(mww s) rm p p. Ti-MCM-22 l fumed silica, tetrabutyl orthotitanate (TBOT), boric acid, deionized water s kr hexametyleneimine (HMI) piperidine(pi)p n m [14-16]. v Sim Ti gelp v MWW sp Žˆ o e q~ rs llp svv sr boric acid Žˆ n p rk l. Ti-MCM-22 Si/B=0.75 Si/ Ti=100-10p l PIm HMIp v s kr l lp, o template r o 530 o C l s p sheet pl r p op MWW s lpp k pl. Ti-MCM-22 cyclohexene 1-hexenep l e pl TBHP rl lp n p ˆ lp, rs p l n p p o44 o2 2006 4k Tatsumi Žl l n[14-16]p r p. l l e k k p pn l, k n l n eˆ p r pn l p rs k pl l m. p rp rm p MFI sp titanium silicalite-1(ts-1) t n l, PO rs pl tn r p m p s m., Ti-MCM-22 l l s mp, }pp k pl p p rn l TS-1 m p r m. 2. 2-1. { oo 2-1-1. TS-1p Žˆ op titanium ethoxide(teot, 98Í Aldrich), e o p tetraethylorthosilicate(teos, Aldrich) n m. v o l TEOT TEOSl }} r eˆ 2e k m, l 1M nkp tetrapr-opylammonium hydroxide(tpaoh, Aldrich)p ~ 30 min r e. s p s p TPA + /Si =0.9, Si /Ti =32.0, H 2 O/Si =80pl. 80 Cl o 6e k k mp v eˆ eˆ p, } l p l 175 Cl 3p o eˆ, l v } p 550 Cl e o m. 2-1-2. Ti-MCM-22p Ti-MCM-22 r B-MCM-22, 6 M v p pn l s tl r l Žˆ p } p q l lt p m. s r piperidine(pi, 99Í, Aldrich), e op fumed silica(cab-o-sil M5, Riedel-dehaen), Žˆ op tetrabutylorthotitante(tbot, 97Í, Aldrich), o p boric acid(99.5í, Aldrich)p n m. r Scheme 2 l r m. 2-2. { m o vp X r p X-ray diffractometer(rigaku-miniflex, Target: CuKα, Filter:Ni) n l m. vp pq k p o l SEM(Hitachi S-4200, S-4300)p n m, Žˆ p p o SEM/EDS(Kevex/Hitachi S-4200) n m. Žˆ p ˆ p o l UV-Vis p mp Varian Cary-3E double beam spectrometer l ˆ eˆ Si t v l 200~600 nm ol r m. FT-IR spectrum(bomem MB104)p e KBr l k eˆ wafer l 500~4,500 cm 1 ol Œ r mp, p rp Micromeritics ASAP 2000 automatic analyzer q pn l k~ v m l v e r m. rp Brunauer-Emmett-Teller(BET) p r m. 2-3. { m Titanium Silicalite-1(TS-1) [Si/Ti=40]p t pl n m. 125 ml n p batch p pn l 36.6 gp n k l 2.5 wtíp (30 wtí) l 40 gp nkp sr

Scheme 2. Synthesis procedure for Ti-MCM-22. Žˆ o rm p pn l e p 123 p m. p flame ioniz-ation detectorm packed column (50 m 0.32 mm) n SIMADZU GC-14A gas chromatography m. t p propylene oxide(po)p propylene glycol(pg) 2-propanol methyl ether(pm) l. 3. y 3-1. { m oo Š l l l 2 v Žˆ o, TS-1m Ti- MCM-22p XRD Ž p Fig. 1l e m. TS-1p n r r p MFI sl X r Ž p 2 θ k om 24.5 29.2 o l ˆ r s lt. Ti-MCM-22 p n rp XRD l om 3 6 p s o ˆ q ˆ p., 7~10 o o 12- membered-ring s ˆ, p l 20~30 pl o ˆ p 10-membered-ringp l k r p. } l p s tp s kr r l om ol XRD Ž p r~rp m., 3 6 sq r p p r tl dehydroxylation l p p, v p lp OH H 2 O lr p s p l s v p k t., 7 p q o p p s l sq 12-memberedring pocketp supercage p p. Ti-MCM-22 p s tl qs p Ž ~ op Žˆ p r o l 2 Mp v p }, XRD l pl lp rm p MWW s o v l. v p p SEMp kp, Fig. 2 l m. TS-1p n pq 0.2 µmp cubic p ˆ l, SEM/EDS e p Si/Ti k 40 pl. Žˆ p o Ti-MCM-22p n, } v k e m } e p SEM vp rq p v p r k l ƒ p 1,000 rpmp eˆ pp v m. k p l p l ˆm r, p e l 1-way valve l p tp back pressure gauge pn l pr k p o veˆ ˆl pp v m. p n p m sr rl p l l pm m, p mechanical stirrer pn m. k e p p 1/16" SUS p pr e p } l GC p s p m. p r p ˆ p ferroin indicator pn CeSO 4 (0.1 M)rr p pn l r m. Simulator(Aspen + 12.1) p e s l p p p p p plp, p r p p Fig. 1. XRD patterns of; (a) TS-1(calcined), (b) Ti-MCM-22(calcined), (c) Ti-MCM-22(as-syn.). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

124 tëp nëpt Ër ˆËk d Fig. 2. SEM images of; (a) TS-1(calcined), (b) Ti-MCM-22(calcined without acid treatment), (b) Ti-MCM-22(calcined with acid treatment). Fig. 4. FT-IR spectra of; (a) TS-1, (b) Ti-MCM-22. Fig. 3. UV-Vis spectra of; (a) TS-1(calcined), (b) Ti-MCM-22(as-syn.), (c) Ti-MCM-22(acid treated), (d) Ti-MCM-22(calcined). l p p s p pv, q p s r qkv v, p p s ov p p m. } v kp e p r p p p l k pp p v v kk. Žˆ o p UV-Visible Fig. 3l e m. Žˆ p rm p s tp l n Žˆ p 220 nmp ~ s, 260 nmp Ž ~ s 320 nmp k ˆr p d v sq pp, p t pp rp 220 nmp ~ s ˆ sq Žˆ sp k r p [17]. TS-1p n UV 220 nml t lp 270 nml p Ž ~ Ž ˆ p lp, 330 nmp k ˆr p p pv kk. rl p sq 220 nm p qžq yp p p p TS-1 e p Žˆ ˆ r~rp k Ž. p Ti-MCM-22p n v Žˆ ˆ el sq ppp k pp, } v p nl 270 nmp Žˆ d r r~rp Žˆ p p p p p. v, } l 4 ~ np Žˆ p mr r l op 270 nm }p sq m. o44 o2 2006 4k e p FT-IR Fig. 4l ˆ l. e l Si-O-Ti l 1 960 cm lp s l Žˆ p p m v lpp p pl., BET p p r l TS-1p n 500 m 2 /gpl, Ti-MCM-22p n 180 m /gp p TS-1p 2 p rp m. 3-2. m l e pp TS-1p t r l r p ˆ l pm, k, n l p lr l s q m. r e p t s p o l p k, p l r pp PO ˆ l e lp 90Í p p lp p p s p } q m. p m m k p p q l 45 o Cm 7 kp ˆ mp, n l e pl rp k v ˆmp tp n m. r p kl r pp s mp, Fig. 5l e m. 0.2 gl 0.6 gp p kp 0.1 gj eˆ 1e k pp r pp 0.2~0.5 gp ol 43l 92Í v p rp mp, 0.6 g p n r pp ll. PO ˆ p n p k p mp 88Íl 79Í v p rp m. 0.5 gp t p r m. r rp r pp v PO ˆ p mp, p nkp 30 wtí p o p m p POp pp v l PG p., PG n p ˆ m p l l rp PMp r l. p / p o rl m p pl vp r l m. p kp 0.5 g p reˆ 300, 500, 1,000 rpmp v eˆ pp m, Fig. 6l e m. 300 rpm l p r p(68í)p llrp 500 rpm p p

Žˆ o rm p pn l e p 125 Fig. 5. Effect of catalyst loading on C 3 epoxidation; (Ë) Conversion of H 2, (Ë) Selectivity to PO, (Ë) Selectivity to PM, (Ë) Selectivity to PG. Reaction conditions: 45 o C, 7 atm, 2.5 wt H 2, methanol solvent, 1,000 rpm stirring. Fig. 7. Effect of H 2 concentration on C 3 epoxidation; (Ë) Conversion of H 2, (Ë) Selectivity to PO, (Ë) Selectivity to PM, (Ë) Selectivity to PG. Reaction conditions: 45 o C, 7 atm, 0.5 g catalyst, methanol solvent, 1,000 rpm stirring. Fig. 6. Effect of stirring speed on C 3 epoxidation; (Ë) Conversion of H 2, (Ë) Selectivity to PO, (Ë) Selectivity to PM, (Ë) Selectivity to PG. Reaction conditions: 45 o C, 7 atm, 0.5 g catalyst, 2.5 wt H 2, methanol solvent. 92Í r pl lpp p m. p p pl o Ž l 1,000 rpm p tp m. nk(30 wtí)p r~ nkp 2.5, 5, 7.5 wtí 10 wtí p eˆ pp mp, Fig. 7l r m. r pp 92Íl 85Í p v l mp, PO ˆ le rp 82l 62Í m. p pp ve ˆp p plp, m / rp p 2.5 wtí t p s p ˆ m. p e l l p p t s p ˆ m. 3-3. m j m i r s l pm pl m p 45 C tp o 15 o C r p ol s m. m pl m p v ~w m p v l p Fig. 8. Effect of temperature on C 3 epoxidation; (a) (Ë) H 2 Conversion at 30 o C, (Ë) H 2 Conversion at 45 o C, (Ë) H 2 Conversion at 60 o C, (Ë) PO Yield at 30 o C, (Ë) PO Yield at 45 o C, (Ë) PO Yield at 60 o C, (b) (Ë) Selectivity to PO at 30 o C, (Ë) Selectivity to PO at 45 o C, (Ë) Selectivity to PO at 60 o C, (Ë) Selectivity to PM at 30 o C, (Ë) Selectivity to PM at 45 o C, (Ë) Selectivity to PM at 60 o C. Reaction conditions: 7 atm, 0.5 g catalyst, 2.5 wt H 2, methanol solvent, 1,000 rpm stirring. p v m w m v l p n n pp, p p npp pl qn m l. Fig. 8p p l m Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

126 tëp nëpt Ër ˆËk d p p r pp mp, m l p n (k p Fig. 11(d) s) pl l p v p k p, m v l r p d (85l 94Í) PO ˆ (94l 70Í) l. p e tlv p s l p p l l p, m l p v p r pl tn m p v p p. POp pp tp p m o, p v 45 C s tl rp o Ž l. 3-4. h m i k p pl m p 4~10 k ol mp, Fig. 9l r m. k p v n l n p kp v, l e p l ps p, p l k v l r pp v. p e p lv e p / v p p k l m p v kp p. PO ˆ k v l 87l 80Í r mp, Fig. 10. Solvent effect on C 3 epoxidation; (a) (Ë ) Conversion PO in methanol, ( Ë ) Conversion PO in ethanol, ( Ë ) Conversion PO in acetonitrile, (Ë) Yield in methanol, (Ë) Yield in ethanol, (Ë ) Yield in acetonitrile, (b) (Ë ) Selectivity to PO in methanol, (Ë) Selectivity to PO in ethanol, (Ë) Selectivity to PO in acetonitrile, (Ë) Selectivity to PM in methanol, (Ë) Selectivity to PM in ethanol, (Ë) Selectivity to PM in acetonitrile. Reaction conditions: 45 o C, 7 atm, 0.5 g catalyst, 2.5 wt H 2, 1,000 rpm stirring. PO p k l lp 1 e p tp 76~78Í ˆ l m l m p ll. Fig. 9. Effect of pressure on C 3 epoxidation; (a) (Ë) H 2 Conversion at 4 atm, (Ë) H 2 Conversion at 7 atm, (Ë) H 2 Conversion at 10 atm, (Ë) PO Yield at 4 atm, (Ë) PO Yield at 7atm, (Ë) PO Yield at 10 atm, (b) (Ë) Selectivity to PO at 4atm, (Ë) Selectivity to PO at 7 atm, (Ë) Selectivity to PO at 10 atm, (Ë) Selectivity to PM at 4 atm, (Ë) Selectivity to PM at 7 atm, (Ë) Selectivity to PM at 10 atm. Reaction conditions: 45 o C, 0.5 g catalyst, 2.5 wt H 2, methanol solvent, 1,000 rpm stirring. o44 o2 2006 4k 3-5. k m i n k pl (1) p l n p, (2) rl p t ~ p p (3) n q~p pp p p p q eˆ p. l l ˆm, lˆm k Š p p n r l pp mp Fig. 10l ˆ l. p rp TS-1p n pl ˆmp q sp n k r pp, p m l ˆm(92Í) > lˆm(82í) > k Š p (26Í)p r pp ll. PO ˆ ˆm(82Í) > k Š p (79Í) > lˆm(67í) m, PO p ˆmp rp n m. n l p n Aspen+12.1p pn l l (Fig. 11 s) p n k Š p > lˆm > ˆmp ˆ l. pl n l p p p n p n m v rl p p t ~ p p p pl m p tn p

Žˆ o rm p pn l e p 127 l pp mp, Fig. 12l ˆ l. p r ~ k n p kp sr l pr ov m. p p s l p l pr p PO 1e p 92l 69Í r pp p pl., PO p l p e p v l l pp v l p PM PGp kp v m. p e p p PO l rp p l r t p r pp p PO ˆ ov ppp k pl. 3-7. TS-1 Ti-MCM-22m { srp MWW sp Ti-MCM-22p pp l TS-1 p ˆm k Š p 2 v n pn l t s l mp Fig. 13l e m. l e Ti-MCM-22 k Š p n l TS-1 n p ˆ l r p 99Íl p p v k 100Íl r PO ˆ p lp plp, p e l p PO ˆ p ov m. p Fig. 11. Vapor pressure of C 3 at 45 o C, 7 atm; (a) in Methanol, (b) in Ethanol, (c) in Acetonitrile, (d) solubility in Varius Solvent at different temperature.., e p l p p s l pp v rp np n p m p lp p. 3-6. m i p p PO l e pl m p s o l m p p l tp Fig. 12. Effect of C 3 O inhibition on C 3 epoxidation; (a) (Ë ) Conversion without PO added, ( Ë ) Conversion with PO added, (Ë ) Yield without PO added, (Ë ) Yield with PO added, (b) (Ë ) Selectivity to PO without PO added, (Ë ) Selectivity to PO with PO added, (Ë) Selectivity to PM without PO added, (Ë) Selectivity to PM with PO added. Reaction conditions: 45 o C, 7 atm, 0.5 g catalyst, 2.5 wt H 2, methanol solvent, 1,000 rpm stirring. Fig. 13. Comparison of catalytic performance by TS-1 and Ti-MCM- 22; (a) (Ë) conversion of TS-1(methanol), (Ë) conversion of Ti-MCM-22(acetonitrile), (Ë ) conversion of Ti-MCM-22(methanol), (b) (Ë) Selectivity to PO: TS-1(methanol), (Ë) Selectivity to PO: Ti-MCM-22(acetonitrile), (Ë) Selectivity to PO: Ti-MCM- 22(methanol), (Ë) Byproduct : TS-1(methanol), (Ë) Byproduct: Ti-MCM-22(acetonitrile), (Ë) Byproduct: Ti-MCM-22(methanol). Reaction conditions: 45 o C, 7 atm, 0.5 g catalyst, 2.5 wt H 2, 1,000 rpm stirring. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006

128 tëp nëpt Ër ˆËk d p e l pp l. ˆ m n l TS-1 r p(15í) PO ˆ (67Í) ov l. kp UV l re m p p Ti d p sql Ti-MCM-22l n p p mnrp, n p p l k Š p (polarity 6.3) l p p ˆm(polarity 6.6)l m rp Žˆ sp TS-1l m p rp e. 1-Hexene l e pl p p Žˆ s l Ti-MCM-22 TS-1 n p p ˆ l. q Ti-MCM-22 p l n p l v rp l v p. 4. (30 wtí) r pn l l e pp l TS-1p l m. r rp, m, k p v l r pp v lp, p e p lvl PO ˆ p m. p nkp 30 wtí p o p m p POp p v l propylene glycol(pg)p p., PG n p ˆm p l l rp propylene monomethyl ether(pm)p r l. ˆmp q n n mp, pp p s l semi-batch p pn l v lp n pl m p v kk. p p pl lrr qn p p pl. Ti-MCM-22 k Š p n l TS-1 n p ˆ lp, p e l lp p v k rp qrp r pn k pl p pn l v Ž. p p 2003 v q qvo l (KRF- 2003-41-D0081)l p p lv n t p p, q p vol. y 1. Bu, J., Yun, S. H. and Rhee, H. K., Epoxidation of n-hexene and Cyclohexene over Titanium-Containing Catalysts, Korean J. Chem. Eng., 17(1), 76-80(2000). 2. Ko, Y. S. and Ahn, W. S., Characterization and Catalytic Properties of Titanium Silicalite-1 Catalyst, Korean J. Chem. Eng., 15(2), 182-191(1998). 3. Clerici, M. G., Bellussi, G. and Romano, U., Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite, J. Catal., 129, 159-167(1991). 4. Thiele, G. R. and Roland, E., Propylene Epoxidation with Hydrogen Peroxide and Titanium Silicalite Catalyst: Activity, Deactivation and Regeneration of the Catalyst, J. Mol. Catal. A: Chemical, 117, 351-356(1997). 5. Chen, L. Y., Chuah, G. K. and Jaenicke, S., Propylene Epoxidation with Hydrogen Peroxide Catalyzed by Molecular Sieves Containing Framework Titanium, J. Mol. Catal. A: Chemical, 132, 281-292(1998). 6. Li, G., Wang, X. S., Yan, H. S., Liu, Y. H. and Liu, X. W., Epoxidation of Propylene Using Supported Titanium Silicalite Catalysts, Appl. Catal. A: General, 236, 1-7(2002). 7. Laufer, W., Meiers, R. and Holderich, W., Propylene Epoxidation with Hydrogen Peroxide over Palladium Containing Titanium Silic, J. Mol. Catal. A: Chemical, 141, 215-221(1999). 8. Laufer, W. and Hoelderich, W. F., Direct Oxidation of Propylene and Other Olefins on Precious Metal Containing Ti-catalysts, Appl. Catal. A: General, 213, 163-171(2001). 9. Jenzer, G., Mallat, T., Maciejewski, M., Eigenmann, F. and Baiker, A., Continuous Epoxidation of Propylene with Oxygen and Hydrogen on a Pd-Pt/TS-1 Catalyst, Appl. Catal. A: General, 208, 125-133(2001). 10. Wang, C., Y., Wang, B. G., Meng, X. K. and Mi, Z. T., Study on Process Integration of the Production of Propylene Oxide and Hydrogen Peroxide, Catal. Today, 74, 15-21(2002). 11. Corma, A., Corell, C. and Perez-Pariente, J., Synthesis and Characterization of the MCM-22 Zeolite, Zeolites, 15, 2-8(1995). 12. Guray, I., Warzywoda, J., Bac, N. and JrG Sacco, A., Synthesis of Zeolite MCM-22 Under Rotating and Static Conditions, Micropor. Mesopor. Mater., 31, 241-251(1999). 13. He, Y. J., Nivarthy, G. S., Eder, F., Seshan, K. and A. Lercher, J., Synthesis, Characterization and Catalytic Activity of the Pillared Molecular Sieve MCM-36, Micropor. Mesopor. Mater., 25, 207-224(1998). 14. Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T., A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations, J. Phys. Chem. B., 105, 2897-2905(2001). 15. Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T., A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes, J. Catal., 202, 245-255 (2001). 16. Wu, P. and Tatsumi, T., Preparation of B-free Ti-MWW Through Reversible Structural Conversion, CHEM. COMMUN., 1026-1027 (2002). 17. Yoon, B. S. and Ahn, W. S., Synthesis, Characterization and Catalytic Properties of Titanium-containing Zeolite Beta Catalysts, HWAHAK KONGHAK, 40(1), 1-8(2002). o44 o2 2006 4k