Lecture «Robot Dynamics»: Kinematics 2

Similar documents
Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics 2

Robot Dynamics Lecture Notes. Robotic Systems Lab, ETH Zurich

Robot Dynamics Instantaneous Kinematiccs and Jacobians

Lecture «Robot Dynamics» : Kinematics 3

Position and orientation of rigid bodies

Exercise 1b: Differential Kinematics of the ABB IRB 120

Differential Kinematics

Position and orientation of rigid bodies

8 Velocity Kinematics

The Jacobian. Jesse van den Kieboom

1.3 LECTURE 3. Vector Product

Rigid Body Motion. Greg Hager Simon Leonard

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Ch. 5: Jacobian. 5.1 Introduction

Week 3: Wheeled Kinematics AMR - Autonomous Mobile Robots

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

MEAM 520. More Velocity Kinematics

Lecture Note 7: Velocity Kinematics and Jacobian

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008

Introduction to quaternions

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

(W: 12:05-1:50, 50-N202)

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian

Screw Theory and its Applications in Robotics

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Robot Dynamics II: Trajectories & Motion

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

BSc (Hons) in Computer Games Development. vi Calculate the components a, b and c of a non-zero vector that is orthogonal to

Lecture Note 7: Velocity Kinematics and Jacobian

Chapter 2 Homogeneous Transformation Matrix

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR

Robotics I. Classroom Test November 21, 2014

Ridig Body Motion Homogeneous Transformations

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Institute of Geometry, Graz, University of Technology Mobile Robots. Lecture notes of the kinematic part of the lecture

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

ECS 178 Course Notes QUATERNIONS

Lecture «Robot Dynamics»: Dynamics 1

Matrix Arithmetic. j=1

Robotics I June 11, 2018

Math 3191 Applied Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

Chapter 6. Screw theory for instantaneous kinematics. 6.1 Introduction. 6.2 Exponential coordinates for rotation

Robotics 1 Inverse kinematics

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Advanced Robotic Manipulation

Chapter 1. Rigid Body Kinematics. 1.1 Introduction

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Quaternions. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Quaternions Semester 1, / 40

Minimal representations of orientation

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

. D CR Nomenclature D 1

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

Linear Algebra Review. Vectors

Robotics I. February 6, 2014

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ

Lecture Note 4: General Rigid Body Motion

Inverse differential kinematics Statics and force transformations

Robotics I. Test November 29, 2013

Robotics 1 Inverse kinematics

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Advanced Robotic Manipulation

Robotics 1 Inverse kinematics

Lecture Note 8: Inverse Kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

Case Study: The Pelican Prototype Robot

Generalization of the Euler Angles

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

arxiv: v1 [math.ds] 18 Nov 2008

Lecture 19 (Nov. 15, 2017)

Lecture 3: QR-Factorization

Linear Algebra March 16, 2019

Quaternions. R. J. Renka 11/09/2015. Department of Computer Science & Engineering University of North Texas. R. J.

Group Representations

Robotics & Automation. Lecture 03. Representation of SO(3) John T. Wen. September 3, 2008

Complex Numbers and Quaternions for Calc III

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics

Rotational Kinematics. Description of attitude kinematics using reference frames, rotation matrices, Euler parameters, Euler angles, and quaternions

Rotational motion of a rigid body spinning around a rotational axis ˆn;

5. Vector Algebra and Spherical Trigonometry (continued)

Semester University of Sheffield. School of Mathematics and Statistics

Course Name : Physics I Course # PHY 107

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

Numerical Methods for Inverse Kinematics

112 Dynamics. Example 5-3

Kinematics. Félix Monasterio-Huelin, Álvaro Gutiérrez & Blanca Larraga. September 5, Contents 1. List of Figures 1.

MATRICES. a m,1 a m,n A =

Trajectory-tracking control of a planar 3-RRR parallel manipulator

ME 301 THEORY OFD MACHİNES I SOLVED PROBLEM SET 2

ME751 Advanced Computational Multibody Dynamics. September 14, 2016

Single Exponential Motion and Its Kinematic Generators

Transcription:

Lecture «Robot Dynamics»: Kinematics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter, Roland Siegwart, and Thomas Stastny Robot Dynamics - Kinematics 2 26.09.2017 1

19.09.2017 Intro and Outline Course Introduction; Recapitulation Position, Linear Velocity 26.09.2017 Kinematics 1 Rotation and Angular Velocity; Rigid Body Formulation, Transformation 26.09.2017 Exercise 1a Kinematics Modeling the ABB arm 03.10.2017 Kinematics 2 Kinematics of Systems of Bodies; Jacobians 03.10.2017 Exercise 1b Differential Kinematics of the ABB arm 10.10.2017 Kinematics 3 Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control 10.10.2017 Exercise 1c Kinematic Control of the ABB Arm 17.10.2017 Dynamics L1 Multi-body Dynamics 17.10.2017 Exercise 2a Dynamic Modeling of the ABB Arm 24.10.2017 Dynamics L2 Floating Base Dynamics 24.10.2017 31.10.2017 Dynamics L3 Dynamic Model Based Control Methods 31.10.2017 Exercise 2b Dynamic Control Methods Applied to the ABB arm 07.11.2017 Legged Robot Dynamic Modeling of Legged Robots & Control 07.11.2017 Exercise 3 Legged robot 14.11.2017 Case Studies 1 Legged Robotics Case Study 14.11.2017 21.11.2017 Rotorcraft Dynamic Modeling of Rotorcraft & Control 21.11.2017 Exercise 4 Modeling and Control of Multicopter 28.11.2017 Case Studies 2 Rotor Craft Case Study 28.11.2017 05.12.2017 Fixed-wing Dynamic Modeling of Fixed-wing & Control 05.12.2017 Exercise 5 Fixed-wing Control and Simulation 12.12.2017 Case Studies 3 Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs Wingtra) 19.12.2017 Summery and Outlook Summery; Wrap-up; Exam Robot Dynamics - Kinematics 2 26.09.2017 2

Last Time: Position Parameterization Position vector: Parameterization: r r χ e χ P e 3 3 Cartesian Cylindrical coordinates Spherical coordinates Relation between linear velocity and parameter differentiation 33 with the parameterization specific matrix EPχ P r r χ E χ e e P P P χ P Robot Dynamics - Kinematics 2 26.09.2017 3

Rotation Parameterization Rotation matrix: 3x3 = 9 parameters Orthonormality = 6 constraints Euler Angles 3 parameters, singularity problem Angle Axis 4 parameters, unitary constraint, singularity problem Rotation vector 3 parameters, singularity problem Quaternions 4 parameters no singularity χ φ n R, rotvec Robot Dynamics - Kinematics 2 26.09.2017 4

Euler Angles Consecutive elementary rotations Three elementary rotations ZYZ and ZXZ: proper Euler angles ZYX: Tait-Bryan angles XYZ: Cardan angles Example Z-Y-Z C C χr eulerzyz C z C y C z AD AD, AB 1 BC CD 2 Robot Dynamics - Kinematics 2 26.09.2017 6

From Euler Angles to Rotation Matrix ZYZ example C C χr eulerzyz C z C y C z AD AD, AB 1 BC CD 2 Robot Dynamics - Kinematics 2 26.09.2017 7

From Rotation Matrix to Euler Angles ZYZ example A rotation matrix has the following form As a function of ZYZ Euler Angles, we found Atan2 function: uses sign of both arguments to determine the correct quadrant Robot Dynamics - Kinematics 2 26.09.2017 8

Euler Angles Rotation Matrix ZYX example Rotation parameters Rotation matrix from Euler Angles Euler Angles from Rotation matrix Robot Dynamics - Kinematics 2 26.09.2017 9

Angle Axis and Rotation Vector Angle axis parameterize the rotation by: Rotation angle Rotation axis Rotation vector (aka Euler vectors) Rotation matrix is given by:, cos sin 1 cos C n I n nn AB 33 T Parameters from rotation matrix Robot Dynamics - Kinematics 2 26.09.2017 10

Unit Quaternions Rotation parameterization w/o singularity problem Complex numbers in 4D ξ 0 1i 2 j 3k 2 2 2 Hamiltonian convention i j k ijk 1 As vector Real part Imaginary part Unitary constraint Inverse Identity ξ 1 0 0 0 T 26.09.2017 Robot Dynamics - Kinematics 2 11

Unit Quaternions Rotation matrix Rotation matrix from unit quaternion Unit quaternions from rotation matrix Robot Dynamics - Kinematics 2 26.09.2017 12

Quiz Rotation matrix C AB 1 0 0 0 1/ 2 3 / 2 0 3 / 2 1/ 2 60 EulerZYX Angle Axis 0 0 0 0 atan 2( 3 / 2,1/ 2) 60 11/ 2 1/ 2 1 2 3 / 2 ( 3 / 2) 1 1 0 0 0 2sin 60 0 0 0 1 1 cos cos 1/ 2 60 Quaternions ξ AB 11/ 2 1/ 2 1 3 1 11/ 2 1/ 2 1 1 1 2 1/ 2 1/ 2 1 1 2 0 1/ 2 1 1/ 2 1 0 ζ 0 = cos ζ = sin θ 2 θ 2 Robot Dynamics - Kinematics 2 26.09.2017 13 n

Unit Quaternions Algebra Product of quaternions Given two quaternions q and p, the product is defined as q p = q 0 + q 1 i + q 2 j + q 3 k p 0 + p 1 i + p 2 j + p 3 k q p = q 0 p 0 + q 0 p 1 i + q 0 p 2 j + q 0 p 3 k q p = +q 1 p 0 i + q 1 p 1 ii + q 1 p 2 ij + q 1 p 3 ik q p = +q 2 p 0 j + q 2 p 1 ji + q 2 p 2 jj + q 2 p 3 jk q p = +q 3 p 0 k + q 3 p 1 ki + q 3 p 2 kj + q 3 p 3 kk q p = q 0 p 0 q 1 p 1 q 2 p 2 q 3 p 3 q p = +(q 0 p 1 + q 1 p 0 + q 2 p 3 q 3 p 2 )i q p = +(q 0 p 2 q 1 p 3 + q 2 p 0 + q 3 p 1 )j q p = +(q 0 p 3 + q 1 p 2 q 2 p 1 + q 3 p 0 )k q 0 q 1 q 2 q 3 p 0 q q p = 1 q 0 q 3 q 2 p 1 q q 2 q 3 q 0 q 1 p = 0 q T 2 q q 0 I + q q 3 q 2 q 1 q 0 p 3 =:M l q p 0 p 1 p 2 p 3 q 0 p q p = 1 p 0 p 3 p 2 q 1 p p 2 p 3 p 0 p 1 q = 0 p T 2 p p 0 I p p 3 p 2 p 1 p 0 q 3 ξac ξab ξbc C C C =:M r p p = M l q p q = M r p q AC AB BC Hamiltonian convention ξ i j k 0 1 2 3 2 2 2 i j k ijk 1 2 ij ji ijk k jk kj i ki ik j Robot Dynamics - Kinematics 2 26.09.2017 14

Unit Quaternions Rotating a vector The pure (imaginary) quaternion of a coordinate vector I r is given by p I r = 0 Ir Given the unit quaternion ζ BI : T p B r = ζ BI p I r ζ BI r C r B BI I Proof (see Quaternion Kinematics by Joan Solà on lecture homepage) Decompose vector in parallel and orthogonal part to get vector rotation formula Show that equation above does exactly the same Robot Dynamics - Kinematics 2 26.09.2017 15

Unit Quaternion Derivation of rotation matrix Derivation of rotation matrix (ζ = ζ BI ): p B r = ζ p I r ζ T = M l ζ M r (ζ T 0 ) Ir 0 Br = ζ 0 ζ T ζ 0 ζ T 0 ζ ζ 0 I + ζ ζ ζ 0 I + ζ Ir M r ζ = ζ 0 ζ T ζ ζ 0 I ζ ζ T = ζ ζ 1 = ζ T = ζ 0 ζ 0 Br = ζ 2 0 + ζ 2 ζ 0 ζ T ζ 0 ζ T ζ T ζ 0 ζ 0 ζ ζ 0 ζ ζ ζ ζ ζ T + ζ 2 0 I + 2ζ 0 ζ + ζ ζ Ir 0 Br = 1 0 0 0 ζ 2 0 ζ 2 I + 2ζ 0 ζ + 2 ζ ζ T Ir B r = ζ 0 2 ζ 2 I + 2ζ 0 ζ + 2 ζ ζ T Ir ζ ζ = ζ ζ T - ζ 2 I C ζ = 2ζ 0 2 1 I + 2ζ 0 ζ + 2 ζ ζ T 26.09.2017 Robot Dynamics - Kinematics 2 16

Quiz 2 Given a vector in A frame A r 0 1 0 60 Rotate this to B frame using quaternions 3 3 1 1 1 1 ξ AB ξ 2 0 BA 2 0 0 0 3 1 0 0 3 1 0 0 0 0 p 0 0 T T r ξ p r ξ M l ξ M r ξ 1 3 0 0 1 3 0 0 0 0 1 1 B BA A BA BA BA B r A r 2 0 0 3 1 2 0 0 3 1 1 1/ 2 0 0 1 3 0 0 1 3 0 3 / 2 Direct calculation using complex numbers T 1 1 1 1 1 1 1 1 1 1 1 1 3 i j 3 i 3 j 3 3 ji ij 3 iji 3 j 3 ji 3 ji iij 3 j 3 ji 3 ji iij 3 j 3k 3k j 2 j 2 3k ξba p A r ξba 2 2 2 2 2 2 2 2 2 2 2 2 Robot Dynamics - Kinematics 2 26.09.2017 17

Unit Quaternion Link to angle axis Given the rotation matrix C ζ = 2ζ 0 2 1 I + 2ζ 0 ζ + 2 ζ ζ T Use this with the angle axis representation ζ 0 = cos θ 2 ζ = sin θ 2 n C ζ θ, n = 2 cos 2 θ 1 I + 2 cos θ sin θ n 2 2 2 + 2 sin 2 θ 2 nnt = cos θ I + sin θ n + (1 cos θ )nn T Robot Dynamics - Kinematics 2 26.09.2017 19

Quiz 3 z 60 y 60 Rotation matrix C AC? 1/ 2 3 / 2 0 1/ 2 0 3 / 2 C AB 3 / 2 1/ 2 0 C BC 0 1 0 0 0 1 3 / 2 0 1/ 2 Quaternion ξ AB 3 1 0 2 0 1 3 3 3 1 0 ξ 1 0 1 0 BC 2 1 ξ AC ξab ξbc 2 0 2 1 0 1 0 3 0 0 1 3 1 1 0 3 1 0 0 22 0 1 3 0 1 1 0 0 3 0 3 11 1 22 3 3 C AC 9 1 3 3 2 3 6 3 6 3 2 3 2 11 6 3 2 3 9 1 3 3 2 3 3 6 22 2 3 6 3 6 2 3 3 9 1 3 3 Robot Dynamics - Kinematics 2 26.09.2017 20

Time Derivatives and Rotational Velocity What is the relation ω AD χ AD Analog to linear velocity: Find, s.t. Robot Dynamics - Kinematics 2 26.09.2017 21

Time Derivatives and Rotational Velocity ZYX example A ωad A ωab A ωbc A ωcd C AB A ωab CAB B ωbc CAB CBC C ωcd e A z z C e B y y C C e C A AB B AB BC C x x z A B C z y x y A e CAB B e CAB CBC C e x c 0 0 z sz sz e B y sz cz 0 1 c B z 0 0 1 0 0 cz sz 0 cy 0 sy 1 cycz C C e C x sz cz 0 0 1 0 0 AB BC C cys z 0 0 1 sy 0 c y 0 s y 0 sz cycz ω 0 cz cysz χ det ER, eulerzyx cosy 1 0 s y Robot Dynamics - Kinematics 2 26.09.2017 22

Derivative Angle Axis, Rotation Vector, Quaternions Angular Velocity Angle Axis Rotation Vector Quaternion with Robot Dynamics - Kinematics 2 26.09.2017 23

Position and Orientation of a Single Body Position vector: Cartesian r r χ e e 3 Rotation Cylindrical coordinates Spherical coordinates Rotation matrix: Euler Angles χ 3 e e R SO Quaternions Robot Dynamics - Kinematics 2 26.09.2017 24

Mini-Introduction to Multi-body Kinematics 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter, Roland Siegwart, and Thomas Stastny Robot Dynamics - Kinematics 2 26.09.2017 25

Classical Serial Kinematic Linkages Generalized robot arm n j joints revolute (1DOF) prismatic (1DOF) n l = n j + 1 links n j moving links 1 fixed link Robot Dynamics - Kinematics 2 26.09.2017 28

Configuration Parameters Generalized coordinates 5 constraints 6 parameters 3 positions 3 orientations n moving links: 6n parameters n 1DoF joints: 5n parameters 6n 5n = n DoFs Generalized coordinates A set of scalar parameters q that describe the robot s configuration Must be complete (Must be independent) => minimal coordinates Is not unique Degrees of Freedom Nr of minimal coordinates Robot Dynamics - Kinematics 2 26.09.2017 29

Forward Kinematics End-effector configuration as a function of generalized coordinates For multi-body system, use transformation matrices n e Note: depending on the selected end-effector parameterization, it is not possible to analytically write down end-effector parameters! Robot Dynamics - Kinematics 2 26.09.2017 30

Forward Kinematics Simple example What is the end-effector configuration as a function of generalized coordinates? T T T T T T IE I 0 01 12 23 3E 1 0 0 0 c1 0 s1 0 c2 0 s2 0 c3 0 s3 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 s1 0 c1 l0 s2 0 c2 l1 s3 0 c3 l2 0 0 1 l3 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 c123 0 s123 l1s1 l2s12 l3s123 0 1 0 0... s123 0 c123 l0 l1c1 l2c12 l3c123 0 0 0 1 Robot Dynamics - Kinematics 2 26.09.2017 31