Cluster-orbital shell model approach for unstable nuclei and the developments

Similar documents
Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Tensor-optimized antisymmetrized molecular dynamics (TOAMD) with bare forces for light nuclei

Continuum States in Drip-line Oxygen isotopes

Cluster-gas-like states and monopole excitations. T. Yamada

The Nuclear Many-Body problem. Lecture 3

Multi-cluster problems: resonances, scattering and condensed states

Structures and Transitions in Light Unstable Nuclei

Nuclear electric dipole moment in the Gaussian expansion method

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights.

A simple effective interaction for 9 He, and Gamow-SRG

RPA and QRPA calculations with Gaussian expansion method

New simple form for phenomenological nuclear potential. Abstract

Physics of neutron-rich nuclei

Effective Field Theory for light nuclear systems

Dynamics of nuclear four- and five-body systems with correlated Gaussian method

Coupled-cluster theory for nuclei

Nuclear structure theory

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

Cluster Models for Light Nuclei

Complex energy methods for structure and reactions. George Papadimitriou

Alpha particle condensation in nuclear systems

The Nuclear Many-Body Problem. Lecture 2

Con$nuum shell model for nuclear structure and reac$ons

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Study of the tensor correlation using a mean-field-type model. Satoru Sugimoto Kyoto University

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi

Di-neutron correlation in Borromean nuclei

The Nuclear Many Body Problem Lecture 3

Atomic Nuclei: Many-Body Open Quantum Systems

arxiv: v1 [nucl-th] 25 Nov 2008

arxiv: v1 [nucl-th] 12 Dec 2008

Coupled-cluster theory for medium-mass nuclei

Citation PHYSICAL REVIEW C (2006), 74(5) RightCopyright 2006 American Physical So

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method

Structure of halo nuclei and transfer reactions

arxiv: v1 [nucl-th] 9 Mar 2010

GSI. SINAP W. Xu, G.W. Fan (HIMAC) :,,,

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Nuclear Landscape not fully known

arxiv:nucl-th/ v1 18 Jan 2006

Alpha cluster condensation in 12 C and 16 O

arxiv: v1 [nucl-th] 1 Nov 2018

Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction

Nucleon Pair Approximation to the nuclear Shell Model

Shell evolution in neutron rich nuclei

Structure at and Beyond the Neutron Dripline

Interaction cross sections for light neutron-rich nuclei

Shell Eects in Atomic Nuclei

Eikonal method for halo nuclei

Cluster and shape in stable and unstable nuclei

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Evolution of shell structure in neutron-rich calcium isotopes

Study of cluster structure by GCM. Ryosuke Imai and Masaaki Kimura (Hokkaido Univ.)

Probing shell evolution with large scale shell model calculations

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Quantum Theory of Many-Particle Systems, Phys. 540

Lecture 4: Nuclear Energy Generation

Physics Letters B. New excited states in the halo nucleus 6 He

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures

Chiral interac,ons in nucleonic ma1er and nuclei

Ab Initio Nuclear Structure Theory

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

The structure of neutron deficient Sn isotopes

Quantum Theory of Many-Particle Systems, Phys. 540

α Particle Condensation in Nuclear systems

Features of nuclear many-body dynamics: from pairing to clustering

Many-Body Theory of the Electroweak Nuclear Response

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear equation of state with realistic nuclear forces

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Unitary-model-operator approach to nuclear many-body problems

Nuclear Physics from Lattice Effective Field Theory

arxiv: v1 [nucl-th] 17 Nov 2015

ISSN : Asian Journal of Engineering and Technology Innovation 02 (03) 2014 (08-13) QR Code for Mobile users

BINDING ENERGY AND SINGLE-PARTICLE ENERGIES IN THE 16 O REGION

Continuum Shell Model

Ab Initio Electromagnetic Transitions with the IMSRG

Quasiparticle-Rotor Model Description of Carbon Isotopes

Beyond mean-field study on collective vibrations and beta-decay

Dissociation of deuteron, 6 He and 11 Be from Coulomb dissociation reaction cross-section

Neutron Halo in Deformed Nuclei

Complex 2D Matrix Model and Internal Structure of Resonances

The nuclear shell-model: from single-particle motion to collective effects

Shell-model description for beta decays of pfg-shell nuclei

Theoretical analysis of resonance states in 4 H, 4 He and arxiv:nucl-th/ v1 20 Dec 2004

Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei

Hartree-Fock-Bogolyubov calculations with Gaussian expansion method arxiv:nucl-th/ v1 15 Aug 2005

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

RPA calculations with Gaussian expansion method

NUCLEAR STRUCTURE AB INITIO

No-Core Shell Model and Continuum Spectrum States of Light Nuclei

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Transcription:

CANHP2015 (week 6), 25-30 Oct. 2015, Kyoto, Japan Cluster-orbital shell model approach for unstable nuclei and the developments Hiroshi MASUI Kitami Institute of Technology

Outline of my talk 1. Cluster-orbital shell model approach 2. Comparison with Gamow shell model 3. Radius of oxygen isotopes

0. Basic motivation

Nuclear structure and the size Halo nuclei I. Tanihata, H. Savajols, R. Kanungo, PPNP68 (2013)

The typical halo nuclei: 11 Li ( 9 Li+2n) Loosely bound valence-nucleon above the core nucleus n n 9 Li I. Tanihata, H. Savajols, R. Kanungo, PPNP68 (2013)

We want to study these nuclei on the same footing Core Valence Core Valence Cluster-orbital shell model (COSM) Y. Suzuki and K. Ikeda, PRC38 (1988)

1. Cluster-orbital shell model

Cluster-orbital shell model approach Hamiltonian CoM motion is removed from the Hamiltonian Y. Suzuki and K. Ikeda, PRC38 (1988) Ĥ = ĥ i + i i< j ( p i p j A C + v ij ) r 2 Core-N (1-body) N-N (2-body) r 1 r N An/-symmetriza/on with the nucleons in the core Core nucleus Orthogonality Condi/on Model (OCM) ˆΛ λ F.S. F.S. λ (F.S. : Pauli-forbidden states)

Basis function (For N-valence nucleon system) Eigenfunction: Gaussian expansion (GEM) Not eigenfunctions of the core+n sub-system Width parameter: Geometrical progression E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003). S. Aoyama, T. Myo, K. Kato, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006). T. Myo, Y. Kikuchi, H. M and K. Kato, Prog. Part. Nucl. Phys. 79, 1 (2014).

Combined with the Complex scaling method (CSM) Complex-scaled eigenvalues on the physical Riemann sheet T. Myo, Y. Kikuchi, H. M and K. Kato, Prog. Part. Nucl. Phys. 79, 1 (2014).

2. Comparison with Gamow shell model

Complex k-plane Im.k Bound states Continua Re. k Anti-bound states (Virtual states) Resonant states

Complex scaling method Resolution of the identity

Gamow shell model approach N. Michel, W. Nazarewicz, M. Płoszajczak, and K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002) R. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Phys. Rev. Lett. 89, 042501 (2002) N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003) N. Michel, W. Nazarewicz, and M. Płoszajczak, Phys. Rev. C70, 064313 (2004). K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, and R. M. Id Betan Phys. Rev. C 91, 034609 (2015)

Gamow shell model Single-particle states Berggren basis G. Papadimitriou, J. Rotureau, N. Michel, M. Płoszajczak,and B. R. Barrett, Phys. Rev. C 88, 044318 (2013).

Basis function GEM with CS and GSM GEM with CS GSM

2-Steps for the comparison with GSM H.M, K. Kato, K. Ikeda, PRC75(2007)034316 1. Prepare the single-particle complete set with the complex scaling 2. Expand the many-body state with the complex-scaled single-particle states

Comparison with the Gamow shell model Two examples: H.M, K. Kato, K. Ikeda, PRC75(2007)034316 18 O ( 16 O+2n) : Stable nucleus Bound, narrow resonant states, continua 6 He ( 4 He+2n) : Halo nucleus Resonant states, continua

Interac/on Oxygen systems Core N: Semi-microscopic poten/al [3] Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 [4] (M=0.58, B=H=0.07) Adjusted to 18 O (0 + ) Size parameter of the core 16 O core (h.o.): fixed size as R rms ( 16 O) = 2.54 fm (b = 1.723 fm) [3] T. Kaneko, M. LeMere, and Y. C. Tang, PRC44 (1991) [4] A. B. Volkov, NPA74 (1965).

Results for the oxygen isotopes Energy and R rms of 17-20 O Energy levels of 18 O GSM: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003)

Energy levels of 19 O Energy levels of 20 O GSM: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003)

Expansion with the single-particle states for 18 O Although the NN-int. are different, COSM and GSM give almost the same result.

Interac/on Helium systems Core N: Semi-microscopic poten/al [5] Reproduce the phase-shie of 4 He+n N-N : Minnesota [6] (u=1.0) Effec/ve 3-body force[7] Adjusted to 6 He ground state [5] H. Kanada, T. Kaneko, S. Nagata, andm. Nomoto, Prog. Theor. Phys. 61, 1327 (1979). [6] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A286, 53 (1977). [7] T. Myo, K. Kato, S. Aoyama, and K. Ikeda, Phys. Rev. C 63, 054313 (2001).

Results for the Helium isotopes Energy of Helium isotopes R rms of Helium isotopes GSM[14]: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003) GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, 044314 (2005). [42] F. Ajzenberg-Selove, NPA490, 1 (1988). [43] I. Tanihata, NPA478, 795c (1998). [44] I. Tanihata et al., PLB289, 261 (1992). [45] G. D. Alkhazov et al., PRL78, 2313 (1997).

Expansion with the single-particle states for 6 He (p 3/2 )-contribution for 6-8 He GSM[14]: N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003) GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, 044314 (2005).

(p 3/2 )- and (p 1/2 )-contributions for 6 He (L max =5) (L=1) (L=1) When the model space is the same, results becomes similar GSM[19]: G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71, 044314 (2005).

C n 2 = (p 3 / 2 ) 2 R rms E C n 2 = (p 1/ 2 ) 2 L max =5 L max =5 ϕ ϕ : L = j ±1/2 Ψ = C n Φ n Although the number of channel increases, contributions of (p 3/2 ) 2 and (p 1/2 ) 2 are almost the same

Correlation of valence nucleons Energy of 6 He V-base ECM (T-base) is important S. Aoyama et al. PTP93 (1995) T-base

Details of poles and continua 2 C n = Pole + S1+ S2 (p 3/2 ) 2 Pole C n 2 = (p 3 / 2 ) 2 (p 1/2 ) 2 Pole S2 C n 2 = (p 1/ 2 ) 2 S2 S1 S1

Precise comparison between GEM with CS and GSM

Precise comparison between two criteria [Gaussian expansion/slater basis] with complex scaling Gamow shell model

Hamiltonian One-body part Two-body part KKNN-poten/al ˆΛ i F.S. F.S. i

Interac/on 4 He+pp/nn systems Core N: Semi-microscopic poten/al [5] Reproduce the phase-shie of 4 He+n N-N : Minnesota [6] (u=1.0) Effec/ve 3-body force[7] Adjusted to 6 He ground state Core-N Coulomb pot. [5] H. Kanada, T. Kaneko, S. Nagata, andm. Nomoto, Prog. Theor. Phys. 61, 1327 (1979). [6] D. R. Thompson, M. LeMere, and Y. C. Tang, Nucl. Phys. A286, 53 (1977). [7] T. Myo, K. Kato, S. Aoyama, and K. Ikeda, Phys. Rev. C 63, 054313 (2001).

TBMEs Gaussian/Slater basis (basis functions are analytic function) TBMEs can be calculated analytically Gamow shell model (sinle-particle states are solved numerically) Numerically obtained w.f. : Expanded with analytical func. Re.k Im. k

Energy of 6 He (0 + and 2 + ) H. M, K. Kato, N. Michel, M. Płoszajczak, Phys. Rev. C 89 (2014) 044317.

Energy of 6 Be (0 + and 2 + ) H. M, K. Kato, N. Michel, M. Płoszajczak, Phys. Rev. C 89 (2014) 044317.

Convergence of the calculation and the related parameters Complex rota/on/berggren basis func/on {α+iβ} {α+iβ} {α-iβ} {α+iβ} Non-Hermi/an (complex symmetric Hamiltonian matrix elements) varia/onal problem Generalized varia/onal problem Ĥ Ĥ Model space Model space

Variational parameters GEM + CS Gaussian width parameters: b, N max Complex rotation angle:θ GSM Discretization of continuum and the contour Parameters in H.O. expansion: hω, N max

Convergence of resonant poles of 6 He (2 + )

Nuclear three-body problem in the complex energy plane: Complex-scaling Slater method A. T. Kruppa, G. Papadimitriou,W. Nazarewicz, and N.Michel,Phys. Rev. C 89, 014330 (2014).

3. Radius of oxygen isotopes

Matter radius of nuclei near the drip-lines A. Ozawa (2001)

19 C 11 Li 6 He Relation for the S n and (R rms /A 1/3 ) 11 Be 23 O 26 F 8 He 24 O Large S n Large R rms F-isotopes O-isotopes C-isotopes

Reaction cross-section of O-isotopes A. Ozawa et al. NPA693 (2001) R. Kanungo et al. PRC84 (2011) R. Kanungo et al. PRC84 (2011)

16 O+XN systems Interac/on H. M, K. Kato and K. Ikeda, PRC73, (2006) Core N: Semi-microscopic poten/al [3] Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 [4] (M=0.58, B=H=0.07) Adjusted to 18 O (0 + ) Size parameter of the core 16 O core (h.o.): fixed size as R rms ( 16 O) = 2.54 fm (b = 1.723 fm) [3] T. Kaneko, M. LeMere, and Y. C. Tang, PRC44 (1991) [4] A. B. Volkov, NPA74 (1965).

Core-size dependence 16 O-core Core-N Core configuration: h.o. wave function E(b) = E(b) Core + E(b) Valence Op/mum b might be different in isotopes/isotones

16 O-core part Energy of 16 O-core with effective NN-int. [5] Energy of 16 O (additional 3-body force) Volkov No.2 (M=0.58) [5] T. Ando, K. Ikeda, and A. Tohsaki-Suzuki, PTP64 (1980).

The core-n part Core-N Hamiltonian: Change of b-parapeter: Strength of the potential

Inclusion of the dynamics of the core: R rms are improved H. M, K. Kato and K. Ikeda, PRC73, (2006)

Our approaches I) Role of many valence neutrons 16 O+Xn model m-scheme COSM + Gaussian basis II) Role of last one- or two-neutrons Core + n or Core +2n model Coupled-channel model for the core

16 O+XN systems Interac/on H. M, K. Kato and K. Ikeda, EPJA42 (2009) Core N: Semi-microscopic Adjusted to 17 O (5/2 +, 1/2 +, 3/2 + ) N-N : Volkov No.2 (M=0.58, B=H=0.07, 0.25) Adjusted to 18 O (0 + ), drip-line at 25 O Size parameter of the core 16 O core (h.o.): fixed size, A 1/6

Wave function Φ = m Radial part c m F m (r 1,r 2,...,r N ) (M M T ) m F m (r 1,r 2,...,r N ) = ( g(r 1 ) g(r 2 ) g(r N )) m Product of Gaussian with polynomial Spin-isospin part (M M T ) m Total M and M T are fixed M = m 1 + m 2 + + m N M T = m T1 + m T 2 + + m TN We check the expectation value of the total J as <J 2 >

B=H=0.07 S n of O-isotopes B=H=0.25 < B=H=0.07 Amrac/on

R rms of O-isotopes B=H=0.07 B=H=0.25 Fixed-core Expanded-core b~a 1/6 b: 1.723 (fm)

Comparison with other approaches Expr.: A. Ozawa et al, NPA693 (2001) : m-cosm with b A 1/6 : fixed-b b A 1/6 Fixed-b : H. Nakada, NPA764 (2006) : B. Ab-Ibrahim et al., JPSJ 78 (2009)

A schematic figure to illustrate the change of the radius of 22 O 0.238 (fm) 22 O 23 O 24 O R rms [1] 2.88±0.06 3.20±0.04 3.19±0.13 [1] A. Ozawa et al, NPA693 (2001)

Inclusion of the core excitation a coupled-channel picture for 16 O H.M, K. Kato, K. Ikeda, NPA895 (2012) 0p-0h 1/ 6 b A 2p-2h ex. b : Fixed Radius : large (0s) 4 (0p) 12 Radius : small [(1s 1/2 ) π (1s 1/2 ) ν ] S=1,T=0 Mean-field-like core [(0 p 1/2 ) π (0p 1/2 ) ν ] S=1,T=0

2p-2h ex. b : Fixed TOSM 4P-1 (Myo) Tensor-op/mized shell model T. Myo et al.,ptp117 (2007) Coupling to the higher orbits High-momentum components Radius : small Small b-parameter Op/mized b-parameter for 4 He

Inclusion of the core excitation TOSM in 9 Li T. Myo, K. Kato, H. Toki and K. Ikeda, PRC76(2007) 1. Different size for each orbit 2. Specific configura/ons are suppressed due to the Pauli-blocking effect

[2p2h excita/ons] 0d 3/2 1s 1/2 0d 5/2 0d 3/2 1s 1/2 0d 5/2 [XpXh excita/ons] 0d 3/2 1s 1/2 0d 5/2

A coupled-channel approach Hamiltonian: " $ # T 1 +V 1 Δ 12 T 2 +V 2 + ΔE Δ 21 %" ' $ &# φ 1 φ 2 % " ' = E φ 1 $ & # φ 2 % ' & 1ch (0p0h) 2ch (2p2h) b = 1.1A 1/6 (fm) 1s 1/2 is allowed b = 1.5(fm) : fixed 1s 1/2 is forbidden Coupling term Δ 12 = Δ 21 = -2MeV Energy difference of the core ΔE = 2.5, 5, 7.5, 10 (MeV)

17 O (5/2 + ) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 19 O (5/2 + ) 16 O-core (0p0h) 16 O-core (2p2h) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 18 O-core (0p0h) 18 O-core (2p2h)

21 O (5/2 + ) 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 20 O-core (0p0h) 20 O-core (2p2h) 23 O (1/2 + ) Pauli-forbidden 0d 3/2 0d 3/2 1s 1/2 1s 1/2 0d 5/2 0d 5/2 22 O-core (0p0h) 22 O-core (2p2h)

Results for a coupled-channel core+n model approach S n (MeV) Fimed 20 O+n 16 O+n 18 O+n S n are almost reproduced 22 O+n

Results for a coupled-channel core+n model approach R rms (fm) A. Ozawa et al. NPA693 (2001) R. Kanungo et al. PRC84 (2011) Mean-field-like core 16 O+n 18 O+n 20 O+n 22 O+n Fixed core

Summary Comparison between GEM+CS and GSM Different procedures for preparing the complete set of the basis function They give numerically the same result (at least) for core+2n systems Generalized variational parameters should be optimized carefully Rrms 23 O and 24 O 16 O(fixed size) +Xn : failed to reproduce the experiment Modification of the core is important [An attempt to reproduce the Rrms] Coupled-channel picture (Shrunk core) + (Broad core) is a possible way