Photoregeneration Experiment Axion search

Similar documents
The BMV project : (Biréfringence Magnétique du Vide) Optical detection of axions? Carlo RIZZO LCAR-IRSAMC Université Paul Sabatier et CNRS Toulouse

arxiv: v1 [quant-ph] 4 Dec 2008

Constraints on chameleons and axion-like particles from the GammeV experiment

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles

New Experiments at the Intensity Frontier

Igor G. Irastorza Lab. Física Nuclear y Astropartículas, Departamento de Física Teórica Universidad de Zaragoza Martes Cuánticos, 2-Diciembre-2014

Photon Regeneration at Optical Frequencies

ADMX: Searching for Axions and Other Light Hidden Particles

Le vide quantique en laboratoire. Laboratory tests of a quantum vacuum

Opportunities for Subdominant Dark Matter Candidates

Laser-Based Search for Dark Matter Particles

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

AXIONS AND AXION-LIKE PARTICLES

Preliminary Results from the Yale Microwave Cavity Experiment

Measurements of the Cotton-Mouton and Inverse Cotton-Mouton effects

The IAXO (International Axion Observatory) Helioscope. Esther Ferrer Ribas, IRFU/SEDI

Searching for the Axion

Reminder : scenarios of light new physics

New experiment for axion dark matter

AXION theory motivation

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Laser Searches for New Particles at Fermilab. William Wester Fermilab

New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

Old problems and New directions on axion DM

Density Gradients and Absorption Effects in Gas-filled Magnetic Axion Helioscopes. South Carolina, 29208, USA 1. INTRODUCTION.

Hidden Sector particles at SNS

LOW ENERGY SOLAR AXIONS

Any Light Particle Search II

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO)

Latest results of CAST and future prospects. Theodoros Vafeiadis On behalf of the CAST collaboration

The BMV project: Search for photon oscillations into massive particles 1

Detecting Dark Energy in the Laboratory

Theory and Phenomenology of WISPs

Search for New Low Energies

Testing axion physics in a Josephson junction environment

Status and prospects on the search for axions. Igor G. Irastorza Universidad de Zaragoza VIII CPAN DAYS, Zaragoza, 29 November 2016

Milano 18. January 2007

Lecture 8. CPT theorem and CP violation

(International AXion Observatory)

arxiv:hep-ph/ v1 18 Jan 2001

Signatures with Electron Beams

Closing in on axion dark matter

No signal yet: The elusive birefringence of the vacuum, and whether gravitational wave detectors may help

Axion Like Particle Dark Matter Search using Microwave Cavities

with Intense X- ray Beams at SPring- 8 and WISPs

Total cross-section for photon-axion conversions in external electromagnetic field

Axion Dark Matter : Motivation and Search Techniques

on behalf of CAST Collaboration

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Dark Energy and Where to find it

Cleaning up the Dishes Axions and the strong CP Problem

International AXion Observatory IAXO

Status Report * Progress in the Photon Regeneration Experiment

The complex vacuum configurations contribute to an extra non-perturbative term in the QCD Lagrangian[1],

First Results from the CAST Experiment

Thermalization of axion dark matter

{ 1{ (by C. Hagmann, K. van Bibber, and L.J. Rosenberg) In this section we review the experimental methodology

Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Axion Detection With NMR

AXIONS. 1. Introduction

The Dark Matter Radio. Kent Irwin for the DM Radio Collaboration. DM Radio Pathfinder

Ir TES electron-phonon thermal conductance and single photon detection

Latest PVLAS Results. Guido Zavattini. Università di Ferrara e INFN. On behalf of the PVLAS collaboration. Hands holding the void Alberto Giacometti

Search for New Physics at the Milliscale

arxiv:hep-ex/ v3 8 Feb 2006

The IBS/CAPP research plan

Shedding Light on the Hidden Sector

The Axion Dark Matter experiment (ADMX) Phase 0

CAST: "Blind" telescope looks at the Sun. Marin Karuza, University of Rijeka Imperial College, London,

Cavity decay rate in presence of a Slow-Light medium

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Markus Ahlers (office 555C BIPAC)

SEARCHING FOR ULTRA-LIGHT HIDDEN PHOTONS

The quest for axions and other new light particles

Ultra-Light Particles Beyond the Standard Model

Sensitivity of the CUORE detector to 14.4 kev solar axions emitted by the M1 nuclear transition of 57 Fe

PVLAS : probing vacuum with polarized light

Axions and X-ray astronomy

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Axions and Axion-Like Particles in the Dark Universe. Andreas Ringwald (DESY)

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

An ultra-low-background detector for axion searches

XMASS: a large single-phase liquid-xenon detector

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

Manifestations of Low-Mass Dark Bosons

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Hong-Ou-Mandel effect with matter waves

Down-to-earth searches for cosmological dark matter

Clock based on nuclear spin precession spin-clock

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Counting Photons to Calibrate a Photometer for Stellar Intensity Interferometry

Project to Install Roman Pot Detectors at 220 m in ATLAS

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

The cryogenic neutron EDM experiment at ILL

Georg G. Raffelt, Max-Planck-Institut für Physik, München. Dark Matter. Axion Dark Matter. Physics Colloquium, University of Sydney, 3 March 2014

Birefringence of interferential mirrors at normal incidence Experimental and computational study

Wolfgang Pauli, CERN, and the LHC. Rüdiger Voss Physics Department, CERN

Discovery of Pions and Kaons in Cosmic Rays in 1947

Transcription:

Laboratoire pour l Utilisation des Lasers Intenses, Palaiseau A.-M. Sautivet, F. Amiranoff Photoregeneration Experiment Axion search Laboratoire Collisions Agrégats Réactivité, Toulouse C. Robilliard, M. Fouché, C. Rizzo Laboratoire National Champs Magnétiques Pulsés, Toulouse J. Mauchain, R. Battesti

Reasons for prediction : Strong CP problem CP symmetry in Quantum ChromoDynamics : In standard model : CP violated θ = strong CP violating term = fundamental constant θ 1 Strong CP problem : Large electric dipole moment for the neutron Problem : not observed experimentally ( θ < 10-10 )

Possible solution Peccei Quinn solution to restore CP symmetry : θ fundamental constant = field particle = AXION Challenge : Detect this particle Implication of detecting this new particle : For QCD theory Cosmological implications : Constitutive of dark matter

Outline 1) Axion??? Properties Axion-Magnetic field interaction 2) Experimental searches ADMX : cosmological axions CAST : solar axions BFRT : production on earth PVLAS ; first detection of axion? 3) Our experiment Setup Key elements : laser, B, detector Synchronization 4) Results Conclusion

Outline 1) Axion??? Properties Axion-Magnetic field interaction 2) Experimental searches ADMX : cosmological axions CAST : solar axions BFRT : production on earth PVLAS ; first detection of axion? 3) Our experiment Setup Key elements : laser, B, detector Synchronization 4) Results Conclusion

Beyond the standard model Pseudoscalar Boson Neutral Very low mass Properties Weak and strong forces : very low cross section Hardly interact with ordinary matter Axion = extremely difficult to detect Coupling to photon : Axion production by photon in a static magnetic field (and vice versa) : Primakoff effect

Axion coupling to photon Wave equation : C i ψ ( z) = C ψ ( z) z = ω 0 0 0 ω B / 2M with 0 B / 2M ω m / 2ω a ψ ( z) = c ( z) + c ( z II photon II ) + c Oscillation between two states : photon (polarisation // B) axion a a axion Parameters : m a axion mass g aγ = 1/M coupling constant ω photon energy

Conversion probability : p Conversion probability ( z) ( z' ) z 2 B m ' ' exp 2 2 = a z dz i M 0 ω In a constant magnetic field over a length L : 2Bω p( L) = 2 Mma 2 2 sin 2 2 m a L 4ω m a 2 L 4 ω << 1

Outline 1) Axion??? Properties Axion-Magnetic field interaction 2) Experimental searches ADMX : cosmological axions CAST : solar axions BFRT : production on earth PVLAS ; first detection of axion? 3) Our experiment Setup Key elements : laser, B, detector Synchronization 4) Results Conclusion

ADMX (Axion Dark Matter experiment) Axion from the halo dark matter of our galaxy Tunable resonant micro wave cavity Superconducting magnet : 8 T over 0.6 m RF detector with small noise Sensitive experiment Model dependent No EFFECT ADMX S. J. Asztalos et al., Phys. Rev. D 69, 011101 (2004)

CAST (CERN Axion Solar Telescope) Solar axion Superconducting magnet : 9 T over 10 m X rays detector CAST prospects CAST 2003 Sensitive experiment Model dependent No EFFECT ADMX G. G. Raffelt, arxiv:hep-ph/0611118)

BFRT (Brookhaven-Fermilab-Rochester-Trieste) Ligth shining through the wall experiment 2 superconducting magnets : 3.7 T over 4.4 m Continuous laser, λ = 514 nm m a max = 8 10-4 Multi-pass cavity in the generation area Photomultiplier, quantum efficiency = 0.1 CAST prospects CAST 2003 ADMX Production and detection in terrestrial lab Model independent Less sensitive No EFFECT BFRT photoregeneration R. Cameron et al., Phys. Rev. D 47, 3707 (1993)

PVLAS (Polarizzazione del Vuoto con LASer ) QED test Superconducting magnet : 5 T over 1 m Continuous laser, λ = 1064 or 532 nm Resonant cavity, F ~ 10 5, L = 6 m Dichroïsm not predicted by QED!!! x E E perp E par B 0 Production and detection in terrestrial lab Model independant Less sensitive PVLAS interpretation : Production of axion E. Zavattini et al., Phys. Rev. Lett. 96, 110406 (2006) ; E. Zavattini et al., arxiv:0706.3419 [hep-ex] y

axion of PVLAS (2006) Problem : Seriously inconsistent with other limits Crucial need for an independent experimental test CAST prospects CAST 2003 Excluded by BFRT PVLAS Experimental projects : ADMX ALPS at DESY OSQAR at CERN LIPSS at Jefferson Laboratory BMV in France GammeV at Fermilab. BFRT photoregeneration PVLAS

Outline 1) Axion??? Properties Axion-Magnetic field interaction 2) Experimental searches ADMX : cosmological axions CAST : solar axions BFRT : production on earth PVLAS ; first detection of axion? 3) Our experiment Setup Key elements : laser, B, detector Synchronization 4) Results Conclusion

Principle of the experiment Number of regenerated photon : N RP =η N i 4 4 BL sin ( y) 4 2M y N i Number of incident photons with y = 2 ma L ω L magnet length η detection efficiency

The three key elements Number of regenerated photon : N RP =η η N i 4 4 BL sin ( y) 4 2M y with y = 2 ma L ω 1. Laser : High N i N RP as high as possible 2. Coils : high BxL 3. Photon detector : high detection efficiency η

1. Nano 2000 Laser Chain (LULI) 1 to 1.5 kj / pulse λ = 1053 nm N i = 5 to 8 10 21 / pulse Pulse duration = 5 ns 5 pulses / day

2. Coils Development (LNCMP) X coil geometry high transverse magnetic field I N i Length = 45 cm I Aperture = 12 mm B 1 B 2 B Coils originally developed for the BMV experiment by S. Batut & O. Portugall.

2. Coils test (LNCMP) B 0 > 12.2 T over 36 cm B.L = 4,5 T.m Time duration : 5 ms B 0 reached within 1.75 ms B 0 (+/- 0.3 %) during 150 μs

2. Coils cryostats (LNCMP) Immersion in liquid nitrogen

3. Detection Single photon Detector : Commercially available from Princeton Lightwave Instruments - 80x80 mm 2 APD optimizes at 1064 nm - Geiger mode with detection gate = 5 ns - Coupling through a fibre Fibre link : - 30 m long avoid electronic noise due to XCoils

3. Detector Test (LCAR) Goals : - High detection efficiency - low dark count rate Adjustments : - Temperature -Biasvoltage - Discriminator threshold Tests performed with cw Nd:YAG monomode laser. Working point Dark count rate = 5 10-4 / Pulse η = 0.5

Performance Expected results : After5 pulses : test PVLAS results (2σ confidence level) With100 pulses: improve BFRT limits for all masses Characteristics of our experiment : Pulsed experiment background not limiting Limited number of pulses / year

General set-up (LCAR)

Inplementation at LULI Vacuum : To avoid air ionization

Inplementation at LULI Focalisation Lens : f = 20 m

Implementation at LULI Coils and their cryostats

Implementation at LULI Generator originally developed for experiments at ESRF by P. Frings. For the Pulsed magnetic field : Transportable generator V max = 16 kv 3 x 1 m 3 ~ 3 tons

Implementation at LULI Fibre and coupler Fibre injection : 80 to 90 %

Synchronization Laser-XCoils B0 (+/- 0.3 %) during 150 μs Magnetic pulse trigger : from the laser chain Ensure laser pulse happens during these 150 μs

Synchronization Laser-Detector Laser pulse : 5 ns Detector gate : 5 ns Trigger = same fast signal as laser with delay lines Jitter = 150 ps Working point

Final tests Optical shielding : no count Electromagnetic noise : count Detector in shielding bay : no count Alignment procedure : with the unchopped pilot beam aligned with the high energy pulse

Final tests How can we be sure that the high energy pulse follows exactly the same optical path? Image recorded for each pulse. Estimation of losses

Ready to take data Strength of our experiment : - high laser energy + high B L - laser + B + detector pulsed Ready : end of May Small integration time to test PVLAS claims Background of detection not limiting Efficient experiment : - to test PVLAS results 2 to 2500 regenerated photons / pulse - not to detect standard axion 10-21 to 10-30 regenerated photons / pulse

Outline 1) Axion??? Properties Axion-Magnetic field interaction 2) Experimental searches ADMX : cosmological axions CAST : solar axions BFRT : production on earth PVLAS ; first detection of axion? 3) Our experiment Setup Key elements : laser, B, detector Synchronization 4) Results Conclusion

Measurements 2 weeks in July and September Number of pulses : 24 Total incident energy : 29.5 kj Effective number of incident photon : 1.15 10 23 Result : No regenerated photon detected How to be sure that detection works correctly?

Detection checking High energy optical path : image recorded for each pulse Synchronization : 2 oscilloscopes - Laser trigger - Magnetic field magnetic field - laser synchronization checking B 0 measurement - Laser trigger - Detector trigger - Detector monitor - Photon TTL detector - laser synchronization checking checking of the APD polarisation

Our limits? : p ( L) ( z' ) L 2 B m ' ' exp 2 2 = a z dz i M 0 ω p Limits? No regenerated photon detected If PVLAS limits confirmed : 2 to 2500 regenerated photons / pulse For a : - detection efficiency η - Confidence level (Ex. : CL = 0.95 2σ) Number n of missed regenerated photon Numerical integration of with 2 ( L) N n 2 i Limits in the (m a, M) plane

Our present limits BFRT 3σ PVLAS 3σ 2006

C. Robilliard et al., Phys. Rev. Lett. 99, 190403 (5 nov. 2007) Our present limits BFRT 3σ PVLAS 3σ 2006 Our limits 3σ Our limits 5σ PVLAS excluded

C. Robilliard et al., Phys. Rev. Lett. 99, 190403 (5 nov. 2007) Our present limits BFRT 3σ PVLAS 3σ 2006 Our limits 3σ Our limits 5σ FermiLab 3σ PVLAS 3σ 2007

Conclusion PVLAS results not confirmed Axion is still running Prospects : 2 weeks of measurements in 2008 Improvement of our limits compared to other terrestrial experiments To test standard axion : far more difficult Different design

Collaborators LCAR Carlo Rizzo Cécile Robilliard Rémy Battesti Julien Mauchain LNCMP LULI Anne-Marie Sautivet François Amiranoff