New experiment for axion dark matter

Similar documents
Old problems and New directions on axion DM

Closing in on axion dark matter

Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

MAD MAX. Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik

Astrophysical and Cosmological Axion Limits

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

Axion in Large Extra Dimensions

Igor G. Irastorza Lab. Física Nuclear y Astropartículas, Departamento de Física Teórica Universidad de Zaragoza Martes Cuánticos, 2-Diciembre-2014

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

New Experiments at the Intensity Frontier

Solar Axions Globular Cluster Supernova 1987A Dark Matter Long-Range Force. Axion Landscape. Georg G. Raffelt, Max-Planck-Institut für Physik, München

Opportunities for Subdominant Dark Matter Candidates

Axion Detection With NMR

Axions and Axion-Like Particles in the Dark Universe. Andreas Ringwald (DESY)

Status and prospects on the search for axions. Igor G. Irastorza Universidad de Zaragoza VIII CPAN DAYS, Zaragoza, 29 November 2016

International AXion Observatory IAXO

Ultra-Light Particles Beyond the Standard Model

Axion-like particles from proton beam dumps

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

Searching for the Axion

Physics Case for Axion or ALP DM. Andreas Ringwald (DESY)

ADMX: Searching for Axions and Other Light Hidden Particles

Any Light Particle Search II

Testing axion physics in a Josephson junction environment

Axion Dark Matter : Motivation and Search Techniques

Axions and X-ray astronomy

The IAXO (International Axion Observatory) Helioscope. Esther Ferrer Ribas, IRFU/SEDI

The QCD axion, precisely.

First Results from the CAST Experiment

The QCD Axion. Giovanni Villadoro

Shedding Light on the Hidden Sector

Fundamental Physics with Atomic Interferometry

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO)

(International AXion Observatory)

Yang-Hwan Ahn Based on arxiv:

Implications of cosmological observables for particle physics: an overview

Axion Like Particle Dark Matter Search using Microwave Cavities

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration

Searching for ALPs and other WISPs at the intensity frontier

Search for New Physics at the Milliscale

Reminder : scenarios of light new physics

Theory and phenomenology of hidden U(1)s from string compactifications

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA

Novel Astrophysical Constraint on Axion-Photon Coupling

Photon Regeneration at Optical Frequencies

Journey at the axion mev mass frontier

Searching for ALPs and Hidden Photons with Intense Photon-and Electron-Beams

Cleaning up the Dishes Axions and the strong CP Problem

Laser Searches for New Particles at Fermilab. William Wester Fermilab

Prospects for Cosmic Axion Detection with ABRACADABRA

AXION theory motivation

Thermal Dark Matter Below an MeV

Dark Radiation and Inflationary Freedom

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Search for New Low Energies

SENSITIVITY OF THE CHERENKOV TELESCOPE ARRAY TO THE DETECTION OF AXION-LIKE PARTICLES

The quest for axions and other new light particles

Photoregeneration Experiment Axion search

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

AXIONS. 1. Introduction

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

DM overproduction Excluded by X-ray observations. Dark matter mass MDM [kev]

LOW ENERGY SOLAR AXIONS

The complex vacuum configurations contribute to an extra non-perturbative term in the QCD Lagrangian[1],

Hidden Sector particles at SNS

Preliminary Results from the Yale Microwave Cavity Experiment

STAX. Paolo SPAGNOLO. INFN - Pisa

Thermalization of axion dark matter

Theory and Phenomenology of WISPs

Axion and Dark Matter Studies in IBS

AXIONS AND AXION-LIKE PARTICLES

Axions and other (Super-)WISPs

Dynamics of the Peccei-Quinn Scale

New detection techniques for axion like particles

Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles

Jun. Prof. Dr. Alessandro MIRIZZI (Universität Hamburg)

The Axion Dark Matter experiment (ADMX) Phase 0

Dark Matter in Particle Physics

Laser-Based Search for Dark Matter Particles

(Mainly centered on theory developments)

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010

MADMAX: A new road to axion dark matter detection OUTLINE:

Master Project. Development of a time projection chamber based on Micromegas technology for CAST (CERN Axion Solar Telescope)

Making Light from the Dark Universe

Physics case for axions and other WISPs. Andreas Ringwald (DESY)

Tokyo axion helioscope experiment

Searching for dark photon. Haipeng An Caltech Seminar at USTC

Tokyo axion helioscope

Study of indirect detection of Axion-Like- Particles with the Fermi-LAT instrument and Imaging Atmospheric Cherenkov Telescopes

Sub-GeV Scale Dark Forces?!

Lecture 12. Dark Matter. Part II What it could be and what it could do

The IBS/CAPP research plan

Axino Phenomenology in the Kim-Nilles mechanism

SEARCH FOR AXION- LIKE PARTICLE SIGNATURES IN GAMMA-RAY DATA

The quest for axions and other new light particles

Axion as a Dark Matter Component

Auf der Suche nach ultraleichten Teilchen jenseits des Standardmodells

Transcription:

New experiment for axion dark matter J. Redondo and J. Jaeckel Feb 27th 2014

Outline - x-summary of Axion and ALP DM - Axion DM waves in Magnetic fields - Dish experiment - Understanding cavity experiments

QCD axion DM f - strong CP problem - Peccei Quinn - a - a - m a axion mass m a =6meV 109 GeV f a coupling to two photons Lg aγ B E a α g aγ = c γ 2πf a - Axion CDM from initial misalignment + decay of topological defects All throughout this talk = c = k B =1 1

QCD axion cold dark matter (two scenarios) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 String decay 2.0 Misalignment postinflation PQ 1.5 Cold DM (realignment+cosmic strings+dws) 1.0 preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Hot DM CMB BBN Random Telescope conditions EBL SK Globular Clusters g aγ White Dwarfs g ae Same a 1 g ae a 1 ( πf a,πf a ) Solar Neutrino flux g aγ SN1987A everywhere but which? IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 2.0 String decay Hot DM CMB BBN Misalignment postinflation PQ 1.5 Cold DM (realignment+cosmic strings+dws) 1.0 preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Telescope EBL SK SN1987A Globular Clusters g aγ White Dwarfs g ae g ae Solar Neutrino flux g aγ IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 2.0 String decay Hot DM CMB BBN Misalignment postinflation PQ 1.5 Cold DM (realignment+cosmic strings+dws) 1.0 preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Telescope EBL SK SN1987A Globular Clusters g aγ White Dwarfs g ae g ae Solar Neutrino flux g aγ IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 2.0 String decay Hot DM CMB BBN Misalignment postinflation PQ 1.5 Cold DM (realignment+cosmic strings+dws) 1.0 preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Telescope EBL SK SN1987A Globular Clusters g aγ White Dwarfs g ae g ae Solar Neutrino flux g aγ IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 String decay 2.0 Misalignment postinflation PQ 1.5 Cold DM (realignment+cosmic strings+dws) 1.0 preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Hot DM CMB BBN Excluded Telescope EBL by experiments SK and Globular Clusters g aγ White Dwarfs g ae SN1987A stellar evolution g ae Solar Neutrino flux g aγ IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 Excluded(?) String decay 2.0 postinflation Misalignment PQ Ω 1.5 (realignment+cosmic cdm h 2 > 0.11 strings+dws) 1.0 Cold DM preinflation PQ 0.5 WD cooling hint (only realignment) 0.0 ADMX ADMX II Burst Duration g ae Hot DM CMB BBN Excluded Telescope EBL by experiments SK and Globular Clusters g aγ White Dwarfs g ae SN1987A stellar evolution g ae Solar Neutrino flux g aγ IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

+ Bounds on axions (and prospects) f a GeV 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 2.0 Excluded(?) postinflation Misalignment PQ Ω 1.5 (realignment+cosmic cdm h 2 > 0.11 strings+dws) 1.0 Cold DM ADMX String decay preinflation PQ 0.5 0.0 WD cooling hint (only realignment) ADMX II Classical axion window Burst Duration g ae Hot DM CMB BBN Telescope EBL SK Globular Clusters g aγ White Dwarfs g ae g ae Excluded by experiments and Solar Neutrino flux g aγ SN1987A stellar evolution IAXO Helioscopes Beam Dump 0.5 10 7 10 6 10 5 10 4 10 3 10 2 10 1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 m a ev

Bounds and prospects in more detail Ν GHz 10 1 1 10 10 2 coupling to two photons g aγ = c γ α 2πf a m a = m a (f a ) 10 2 BFRT IAXO - Lab. Bounds - Exp. Prospects - Axion models - Ω acdm h 2 =0.12 c γ CΓ 10 ADMX ADMXII ADMXHF KSVZ ρ CDM =0.3GeV/cm 3 1 ADMX DFSZ HS HKS postinflation PQ 10 1 Antropic Θ 0 1 Θ 0 1 DS preinflation PQ 10 7 10 6 10 5 10 4 10 3 m a ev

General Axion-like particles (ALPs) - Mass and coupling unrelated g = α O(1) 2πf a 9 CAST Sumico EBL x ion HB Τ - Scenario 1 f a <H I (realignment+cosmic strings, DWs..) Log 10 g GeV 1 12 Optical EBL 15 X Rays 5 2 1 4 Log 10 m Φ ev

General Axion-like particles (ALPs) - Mass and coupling unrelated g = α O(1) 2πf a 9 CAST Sumico EBL x ion HB Τ - Scenario 2 (anthropic) f a >H I (realignment mechanism) Log 10 g GeV 1 12 Optical EBL - Isocurvature constraints!! 15 X Rays 5 2 1 4 Log 10 m Φ ev

Experiments to detect axion DM - Dish antenna DM a photon to detect! B-field - Cavity experiments DM a amplify and detect B-field - Light propagation E B x - Oscillating EDM

DM around us ρ CDM 0.3 GeV cm 3 velocities in the galaxy phase space density = m an a v 300 km/s 10 3 c n a 4πp 3 3 10 29 µev m a 4 occupation number is HUGE! behaves like a classical NR field! Fourier-transform a(x) ω m a (1 + v 2 /2+...) δω = m av 2 2 δω ω 10 6 ω m a

Axion - photon mixing in a magnetic field Raffelt, PRD 88 - In a magnetic field one photon polarization Q-mixes with the axion L I = g aγ 4 F µν F µν a = g aγ B E a Not axions, nor photons are propagation eigenstates! Axion-photon oscillations in a magnetic field, basis for - light shining through walls (LSW): ALPS @ DESY, GammeV,... - Helioscopes as CAST and SUMICO - Astrophysical anomalies? TeV transparency... and... - Haloscope DM detection

Axion - photon mixing in a magnetic field Raffelt, PRD 88 - Equations of motion for a plane wave A a exp( i(ωt kz)). (ω 2 k 2 1 0 ) 0 1 + 0 g aγ B ω g aγ B ω m 2 a A a = 0 0. axion mixes with A-component PARALLEL to the external B-field - Dark matter solution v = k ω ; ω m a(1 + v 2 /2+...) A a DM χa 1 exp( i(ωt kz)).

Axion - photon mixing in a magnetic field Raffelt, PRD 88 - Equations of motion for a plane wave A a exp( i(ωt kz)). (ω 2 k 2 1 0 ) 0 1 + 0 g aγ B ω g aγ B ω m 2 a A a = 0 0. axion mixes with A-component PARALLEL to the external B-field - Dark matter solution v = k ω ; ω m a(1 + v 2 /2+...) A a DM χa 1 exp( i(ωt kz)). It has a small E field!

Axion - photon mixing in a magnetic field Raffelt, PRD 88 - Equations of motion for a plane wave A a exp( i(ωt kz)). (ω 2 k 2 1 0 ) 0 1 + 0 g aγ B ω g aγ B ω m 2 a A a = 0 0. axion mixes with A-component PARALLEL to the external B-field - Dark matter solution v = k ω ; ω m a(1 + v 2 /2+...) A a DM It has a small E field! χa exp( i(ωt kz)). 1 χ a g aγ B m a

DM axions in a magnetic field ω, k, a 0 E a = ωχa 0 ω m a k B ext B a = k E a ω kχa 0

DM axions in a magnetic field E a = ωχa 0 ω, k = 0,a 0 B a =0 B ext

DM axions in a magnetic field ω, k, a 0 E a = ωχa 0 B ext B a = k E a ω kχa 0

DM axions in a magnetic field ω, k, a 0 E a = ωχa 0 B a =0 B ext

DM axions entering a magnetic field ω, k, a 0 B ext =0 B ext =0 sharp boundary

DM axions entering a magnetic field E a = ωχa 0 ω, k, a 0 B ext =0 B ext =0 sharp boundary

DM axions entering a magnetic field E a = ωχa 0 ω, k, a 0 transmitted photon wave ω, ωn, E a 2 reflected photon wave E a ω, ωn, 2 B ext =0 B ext =0 sharp boundary

DM axions changing medium Jaeckel and JR arxiv:1308.1103 B ext = B 2 B ext = B 1 index of refraction n 2 index of refraction n 1 χ 1 = gb 1 1 χ 2 = gb 2 1 m m a n 2 a n 2 2 1 E a = ωχ 1 a 0 ω, k, a 0 sharp boundary dω 1

DM axions changing medium Jaeckel and JR arxiv:1308.1103 B ext = B 2 B ext = B 1 index of refraction n 2 index of refraction n 1 χ 1 = gb 1 1 χ 2 = gb 2 1 m m a n 2 a n 2 2 1 E a = ωχ 2 a 0 E a = ωχ 1 a 0 ω, k, a 0 sharp boundary dω 1

DM axions changing medium Jaeckel and JR arxiv:1308.1103 B ext = B 2 B ext = B 1 index of refraction n 2 index of refraction n 1 χ 1 = gb 1 1 χ 2 = gb 2 1 m m a n 2 a n 2 2 1 E a = ωχ 2 a 0 E a = ωχ 1 a 0 ω, k, a 0 transmitted photon wave reflected photon wave ω, ωn 2, (χ 1 χ 2 ) n 1 n 2 ωa 0 ω, ωn 1, (χ 2 χ 1 ) ωa 0 n 1 + n 2 n 1 + n 2 sharp boundary dω 1

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field Radiated photon wave

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field Radiated photon wave

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field Radiated photon wave

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field E γ + E a z=zmirror =0 Radiated photon wave

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field E γ + E a z=zmirror =0 Radiated photon wave E γ = ω a χ cos(ω γ (t z)).

Radiation from a magnetised mirror Horns at al JCAP04(2013)016 E a = ω a χ cos(ω a (t + vz)). magnetic field E γ + E a z=zmirror =0 Radiated photon wave E γ = ω a χ cos(ω γ (t z)). whose frequency is ω γ = ω a = m a (1 + v 2 /2)

3D situation ω, k, a 0 k 1 k E a = ωχa 0 k 2

3D situation ω, k, a 0 k 1 k k 2 E γ E a

3D situation ω, k, a 0 k 1 k k 2 k µ γ =(ω, k 1,k 2, ω 2 k 2 ω) E γ E a

3D situation ω, k, a 0 k 1 k k 2 k µ γ =(ω, k 1,k 2, ω 2 k 2 ω) E γ E a

3D situation ω, k, a 0 k 1 k k 2 E γ E a k µ γ =(ω, k 1,k 2, k µ γ (ω, 0, 0,ω) ω 2 k 2 ω)

3D situation ω, k, a 0 - emitted wave perpendicular to the surface k 1 - up to O(k/w) corrections ~ 0.001 - polarized ~ along the magnetic field k k 2 E γ E a k µ γ =(ω, k 1,k 2, k µ γ (ω, 0, 0,ω) ω 2 k 2 ω)

Simplest experiment Horns at al JCAP04(2013)016 light rays are focused in the dish center... up to an angle of order O(k /ω) spherical reflecting dish

Small electric field: how small? - Recall that for QCD axions m a = 6 mev(10 9 GeV/f a ) χ a g aγb m a 10 15 B 10 Tesla c γ 2 The small component does not depend on axion mass! - We know the typical axion amplitude -> typical electric field ρ CDM = 1 2 m2 aa 2 0 =0.3 GeV cm 3 E 2 m a χ a a 0 2 2χ 2 aρ CDM =2χ 2 a (2300 V/m) 2 E 10 12 V m B 5Tesla c γ

Signal size Horns et al, JCAP04(2013)016 spherical dish? detector center sph. P center E a 2 A dish χ 2 ρ CDM A dish 10 26 B 5T c γ 2 2 A 1m 2 Watt

Signal size Horns et al, JCAP04(2013)016 spherical dish? detector center sph. P center E a 2 A dish χ 2 ρ CDM A dish 10 26 B 5T c γ 2 2 A 1m 2 Watt broadband! :-) δω ω O(1) measure 1/octave of a decade with the same detector at the same time

Signal to noise S N = P signal P noise P signal T S measurement dominated by background S N =8 10 2 5K T S Area 10 m 2 B time Bandwidth 5T c γ 2 2 time 1 year (P noise T S ω) (T Sq.lim. = ω) 10 6 ω/ω 10 µev m a but we can do better... up to the quantum limits (one can even do better...) S N = 14T Sq.lim T S Area 10 m 2 B 10 T c γ 2 2 time 1 year 10 6 ω/ω 10 µev m a 3/2

Cavity searches II: ADMX and relatives Ν GHz 10 1 1 10 10 2 10 2 BFRT DISH IAXO - Lab. Bounds - Exp. Prospects - Axion models - Ω acdm h 2 =0.12 c aγγ ρcdm 0.3GeV/cm 3 CΓ 10 ADMX ADMXII ADMXHF KSVZ 1 ADMX DFSZ HS HKS postinflation PQ 10 1 Antropic Θ 0 1 Θ 0 1 DS preinflation PQ 10 7 10 6 10 5 10 4 10 3 m a ev

Limitations: Diffraction r R λ R r Better for small lambda

Limitations: momentum distribution k R λ R r

Limitations: momentum distribution k R λ R r

Limitations: momentum distribution k R R k ω R k ω 10 3 R

Limitations: momentum distribution and Earth s motion with respect to DM k R center of the distribution biased an amount Rv,Earth DM --------- > Daily modulation

Detecting the velocity distribution of DM! k At fist order rays from different parts of the surface end up in the same spot in a CCD d R k m a Rv Measuring Intensity I(d x,d x ) we measure velocity distribution of DM!!! Disclaimer: - 1 - Integrated over - 2 - aberrations of order so make r/r small v d = O(rv )

Conclusions - Axion DM - well motivated - underrepresented (getting better) - testable - key targets not covered - New experiment: dish antenna - a little short for axions - ideal for Hidden Photons and ALPs - directional detection - New understanding of the old experiments - More experiments needed!, some on the go! - ADMX-II, HF

First moves in the visible - Tokyo U. (moving to the MW)

First moves in the visible - DESY (Dark matter: a light move aftermath)