Optical polarization from AGN

Similar documents
Spotting the misaligned outflows in NGC 1068 using X ray polarimetry

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Black Holes and Active Galactic Nuclei

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

Variability in AGN polarized spectra - a view to the BLR and torus structure

Active Galactic Alexander David M Nuclei

Interpreting AGN polarization at innermost spatial scales. Makoto Kishimoto. KSU - Kyoto Sangyo Univ

Active Galactic Nuclei

The Phenomenon of Active Galactic Nuclei: an Introduction

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Chapter 17. Active Galaxies and Supermassive Black Holes

2. Active Galaxies. 2.1 Taxonomy 2.2 The mass of the central engine 2.3 Models of AGNs 2.4 Quasars as cosmological probes.

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

DLAs Probing Quasar Host Galaxies. Hayley Finley P. Petitjean, P. Noterdaeme, I. Pâris + SDSS III BOSS Collaboration 2013 A&A

Active Galactic Nuclei

Vera Genten. AGN (Active Galactic Nuclei)

Lecture 11 Quiz 2. AGN and You. A Brief History of AGN. This week's topics

Challenges to the AGN Unified Model. Stefano Bianchi

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Active Galaxies & Emission Line Diagnostics

Active galaxies. Some History Classification scheme Building blocks Some important results

Active Galaxies & Quasars

NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS

Quasar Winds: the 4 th element

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068

A zoo of transient sources. (c)2017 van Putten 1

ACTIVE GALACTIC NUCLEI: FROM THE CENTRAL BLACK HOLE TO THE GALACTIC ENVIRONMENT

THE PHYSICS AND EVOLUTION OF ACTIVE GALACTIC NUCLEI

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

The X-Ray Universe. The X-Ray Universe

Active Galactic Nuclei - Zoology

Low-Ionization BAL QSOs in Ultraluminous Infrared Systems

Astrophysical Quantities

Radio Loud Black Holes. An observational perspective

Overview of Active Galactic Nuclei

TEMA 6. Continuum Emission

AGN Structure from Multi-wavelength Polarization

This week at Astro 3303

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

Active galactic nuclei (AGN)

A powerful tool to uncover! hidden monsters? Daniel Asmus! ESO, Chile

Dusty AGN torii. Ionization cones: toroidal obscuration

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Set 4: Active Galaxies

Empirical Evidence for AGN Feedback

Lecture 9. Quasars, Active Galaxies and AGN

Methods of Measuring Black Hole Masses: Reverberation Mapping. Misty C. Bentz Georgia State University

arxiv: v1 [astro-ph.he] 4 Dec 2017

Set 4: Active Galaxies

AGN feedback. Nadia Zakamska & Rachael Alexandroff Johns Hopkins University

Active Galactic Nuclei OIII

AGN feedback and the connection to triggering

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

GALAXY EVOLUTION STUDIES AND HIGH PERFORMANCE COMPUTING

Interferometry and AGN

ACTIVE GALAXY UNIFICATION

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN

The AGN / host galaxy connection in nearby galaxies.

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

From X-ray Binaries to AGN: the Disk/Jet Connection

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

arxiv: v1 [astro-ph.ga] 24 Nov 2017

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

(Astro)Physics 343 Lecture # 12: active galactic nuclei

"The Supermassive Black Hole in Arp102B" Harlan Devore (Lead), Cape Fear High School, Fayetteville, NC

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Frequency of Seyfert Type Transitions in a Sample of 102 Local Active Galactic Nuclei

Thus Far. Intro / Some Definitions Hubble Classification Components of Galaxies. Specific Galaxy Types Star Formation Clusters of Galaxies

Lecture 7 Active Galactic Nuclei - I

Black Holes and Quasars

ASCA Observations of Radio-Loud AGNs

Powering Active Galaxies

Today. Practicalities

TEMA 3. Host Galaxies & Environment

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

Krista Lynne Smith M. Koss R.M. Mushotzky

What s the fuss about AGN?

Galaxies and Cosmology

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

What triggers Kpc scale Radio Outflows in Seyfert Galaxies?

- AGN feedback in action?

Results from the Chandra Deep Field North

Infrared Emission from the dusty veil around AGN

Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses)

Extragalactic Radio Sources. Joanne M. Attridge MIT Haystack Observatory


Radio Galaxies. D.Maino. Radio Astronomy II. Physics Dept., University of Milano. D.Maino Radio Galaxies 1/47

theguardian.com Martin Elvis Harvard-Smithsonian Center for Astrophysics

H. Sugai, A. Kawai, T. Hattori, S. Ozaki, G. Kosugi, A. Shimono, H. Ohtani, T. Hayashi, T. Ishigaki, M. Ishii, M. Sasaki

The Structure of Active Galactic Nuclei on Scales from 100mas to 100µas

Tori & Winds, Leicester 14 September Disk Winds - tests? Martin Elvis. Harvard-Smithsonian Center for Astrophysics

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Transcription:

Optical polarization from AGN Damien Hutsemékers (University of Liège, Belgium) Polarization & AGN II, 11-12 May 2015, Strasbourg, France 1

Outline Polarization properties of radio-quiet AGN including some lowpolarization radio-loud objects (excluding blazars), with focus on the origin of the polarization Seyfert 2 Seyfert 1 Quasars type 1 Quasars type 2 Broad Absorption Line QSOs A coherent view of AGN polarization? Quasar polarization and large-scale structures 2

Outline Never underestimate the pleasure we feel from hearing something we already know. Enrico Fermi (c.1935) 3

NGC 1068 NGC 1068 : one of the nearest and brighest type 2 Seyfert galaxy (narrow-line Seyfert) Optical spectropolarimetry (Angel et al. 1976, Antonucci & Miller 1985): - pcont ~ 16% wavelength independent but diluted by stellar light - broad Balmer lines typical of Seyfert 1 are observed and polarized as the continuum (in p and θ) - polarization angle θ perpendicular to the radio jet axis - narrow lines have low polarization (~1%) and different θ Lines and continuum polarization a region outside the BLR not synchrotron but scattering in Wavelength-independent scattering over the X-ray / optical range not dust but electron scattering Seyfert 2 = Seyfert 1 obscured by a dusty torus : unification models 4

NGC 1068 2.9 x 3.3 Centrosymmetric polarization due to dust scattering (From Keel, www.astr.ua.edu) (HST UV observations, Capetti et al. 1995 ) Scattering of nuclear light occurs at different scales : electrons inside the NLR and dust in external conical regions. Electron and dust produce different line broadening (Miller et al. 1991) 5

Seyfert 2 galactic nuclei Observations of other highly polarized Seyfert 2 confirm the scenario proposed for NGC 1068, revealing other hidden Seyfert 1 nuclei Electron scattering is likely the main polarization mechanism in the nucleus, although a firm conclusion requires proper disentangling of various contributions to the continuum light In most objects, the polarization is perpendicular to the radio axis and/or to the ionization cones However, most Seyfert 2 galaxies have little polarization and high polarization objects are rare dilution by an additional continuum source is needed (partly unobscured continuum? emission from the scattering region itself? starburst ) (Martin et al. 1983, Miller & Goodrich 1990, Tran 1995, Heckman et al. 1995) 6

Seyfert 1 galactic nuclei Like Seyfert 2 galaxies, most Seyfert 1 have little polarization, some rare objects showing p ~ 5% (Martin et al. 1983, Goodrich & Miller 1994) Optical spectropolarimetry of Seyfert 1 nuclei reveals diversity (Goodrich & Miller 1994, Smith et al. 2002) - polarization is more often parallel to the radio axis / ionization cones but perpendicular polarization is also observed (~1/5) equatorial and polar scattering regions are needed - broad line polarization shows structure in p and θ across the line profile the BLR is resolved in velocity by the scattering region subject to two distinct scattering regions - diversity of wavelength dependence of p and line broadening both electron and dust scattering contribute 7

Polarization in Seyfert galaxies : a unified view S1 with null-polarization S1 with polarization dominated by equatorial scattering S1 with polarization dominated by polar scattering S2 with polarization from polar scattering (Smith et al. 2004, Batcheldor et al. 2011) The relative importance of extended polar scattering and compact equatorial scattering is determined by inclination 8

Polarization across the Hα line profile Hα (Smith et. 2002, 2005) Polarization dilution in the core + rotation across the profile symmetric around the continuum PA. Additional polarization by the polar region can break the PA rotation symmetry if this region is outflowing. 9

State-of-the-art modeling vs data Monte-carlo radiative transfer models allow to consider various geometries, scatterer species, and multiple scattering, further extending previous models (e.g., Goosmann & Gaskell 2007) - dust scattering off the torus is important for Seyfert 2 polarization in addition to the resolved electron/dust polar scattering, and negligible for Seyfert 1 orientations - the accretion disk itself cannot produce the Seyfert 1 polarization: an equatorial electron scattering region is definitely needed Time-dependent polarization modeling of NGC 4151 (Seyfert 1) explains the 8-day time lag between total and polarized flux by polarization from an electron-scattering disk, ruling out dust scattering in the torus (Gaskell et al. 2012) Confrontation of models with observations on a statistical basis is necessary (cf. Marin 2014). More observables and high quality measurements are needed 10

Radio-quiet quasars : type 1 High-redshift objects : - rest-frame ultraviolet continuum and high-ionization lines - barely resolved host galaxies Broad-band polarization surveys found pmean ~ 0.6%, a small minority (~ 1/100) showing p > 3% (Stockman et al. 1984, Berriman et al. 1990) As for radio-loud quasars (Stockman et al. 1979, Rusk and Seaquist 1985), the optical polarization PA of radio-quiet objects is also apparently aligned with the radio structure suggesting equatorial scattering (Berriman et al. 1990) Spectropolarimetry of 2MASS QSOs reveals unpolarized narrow lines and polarized broad Balmer lines with sometimes structure in p and θ (Smith et al. 2003), while some low-polarization radio-loud type 1 quasars show polarization only in the continuum, the broad lines being essentially unpolarized (Kishimoto et al. 2004). This suggests that the scattering region can be located outside or inside the BLR 11

Radio-quiet quasars : type 2 About 150 type 2 quasars in the redshift range 0.3 < z < 0.8 were found in the SDSS by selecting narrow-line AGN with high [OIII] luminosities (out of ~105 objects) (Zakamska et al. 2003) Spectropolarimetry reveals (Zakamska et al. 2005) - high polarization often > 3% and up to 17% - type 1 broad lines are detected in the polarized flux Support the extension of the type 1 / type 2 unification by orientation model to at least some high-luminosity AGN 12

Polarization angles : a type 1 / type 2 dichotomy The polarization of type 2 quasars is perpendicular to the extended UV continuum (Zakamska et al. 2005) After image deconvolution, the polarization of type 1 quasars appears mostly parallel to the extended UV continuum (Borguet et al. 2008) The two-component polar + equatorial scattering may also prevail in high luminosity AGN Three-band HST color-composite images of type 2 quasars. The irregularly shaped blue spot is identified as a one-sided scattering region (top) or as a fairly symmetric bi-conical region (bottom). (From Zakamska et al. 2005) 13

Broad Absorption Line Quasars Broad absorption lines are present in ~20% of high redshift (z > 1.5) radio-quiet quasars. BALs are blue-shifted wrt the emission lines, sometimes detached, revealing ionized outflowing material Since non-bal and BAL QSOs have similar emission-line properties, a BAL region may be present in all radio-quiet quasars, BALs being only observed from nearly equatorial views (between type 1 and type 2 views) (Weymann et al. 1991) BAL QSOs are essentially radio-quiet but a significant number of radio-loud objects does exist (1/10) (Shankar et al. 2008) BAL QSOs as a class are more polarized than non-bal QSOs (p ~1-2% vs 0.6%) (Moore & Stockman 1984, Hutsemékers et al. 1998) 14

Spectropolarimetry of BAL QSOs High polarization in the BAL Dilution in the BEL Scattered BEL Shallower BAL in the polarized flux Rotation of θ (e.g. Goodrich & Miller 1995, Ogle et al. 1999, Lamy & Hutsemékers 2004, DiPompeo et al. 2013) 15

Polarization in BAL QSOs BELs are usually less polarized than the continuum scattering region is (only slightly?) outside the BLR the The BAL is shallower in the polarized flux the scattered light passes through the BALR and is less absorbed than the direct light Statistical analyses of various observables reveal a correlation between polarization and the BAL onset velocity (Lamy & Hutsemékers 2004, DiPompeo et al. 2013) (v_onset >>) (v_onset <<) 16

A two-component BAL wind model? Rotation of the polarization in the lines regions or resonance scattering more than one scattering Radio observations of radio-loud BAL QSOs suggests that BAL flows are seen at various inclinations wrt the line of sight and various orientations wrt the jet axis (Zhou et al. 2006, DiPompeo et al. 2013, Bruni et al. 2013) equatorial and polar outflows do exist (BAL / non-bal unification by orientation models are incomplete) Microlensing suggests the simultaneous presence of two orthogonal scattering regions, a compact one and an extended one A two-component polar + equatorial wind can explain most observations. Continuum polarization can be due to electron scattering in the BEL / BAL wind (Wang et al. 2005, 2007) 17

A coherent view of polarization from radio-quiet AGN? Most observations seem to require two orthogonal scattering regions related to the radio jet / accretion disk axis. In the framework of the unification models their relative importance is driven by inclination. The model established for low-luminosity AGN apparently extends to (at least some) higher luminosity quasars Scattering from compact regions inside the torus requires electrons. The nature / origin of these regions is unknown. In BAL QSOs they could be related to the wind - What is the nature of the scattering regions? - Are all scattering regions simultaneously present in AGN? - Polarization in type 2 AGN: mostly due to scattering off the torus? - Equatorial scattering region can be inside the BLR for Q1 not for S1? - Do polarization properties evolve with time (redshift)? Statistical studies needed 18

Infrared interferometry of NGC 1068 [OIII] image Maser disk Compact dust emission Ionization cones (velocity mapping) (From Raban et al. 2009) Individual objects can significantly differ from the simplified global view 19

Tracing large-scale structures with quasar polarization Models of co-evolution of galaxies with the large-scale structures in which they are embedded predict alignments or anti-alignments of galaxy axes with filaments depending on halo mass, redshift and feedback (e.g., Dubois et al. 2014) Observations show that galaxy spin axes align with large-scale structures such as cosmic filaments (e.g., Tempel & Libeskind 2013; Zhang et al. 2013). Till now, such alignments are detected up to redshift z 0.6 at scales < 100 Mpc Since quasar polarization is related to the accretion disk axis it allows us to test these models at moderate to high redshifts We have measured the polarization of quasars belonging to large quasar groups at redhsift z ~ 1.3 (Clowes et al. 2013). 20

Quasar polarization and large-scale structures The distribution of the acute angle Δθ between quasar polarizations and the orientation of their host large-scale structure. The bimodal distribution shows that quasar polarization vectors are either parallel or perpendicular to the large-scale structures to which they belong The large quasar groups and their orientations. In these groups 19 quasars were found to be significantly polarized (p > 0.6%) (From Hutsemékers et al. 2014) 21

Quasar polarization and large-scale structures Since polarization is either parallel or perpendicular to the quasar axis depending on inclination And since quasars seen at high inclinations usually show broader emission lines Distribution of the angle Δθ after rotating by 90º the polarization angles of objects with very large MgII emission line widths Polarization of quasars in large groups at z ~ 1.5 apparently shows alignments with the structures in which they are embedded This kind of observations can constrain models of the co-evolution of AGN, galaxies and large-scale structures 22

Final conclusions Although the standard model seems successful, AGN polarization still deserves much observations to be fully understood (a dedicated telescope?) Polarization is a great tool to probe the physics of AGN as well as their relation to the cosmic evolution 23