Modeling of the Thermal Behavior of an Electric-Vehicle Battery

Similar documents
An Example file... log.txt


The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Framework for functional tree simulation applied to 'golden delicious' apple trees

Optimal Control of PDEs

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

4.3 Laplace Transform in Linear System Analysis

Vectors. Teaching Learning Point. Ç, where OP. l m n

An Introduction to Optimal Control Applied to Disease Models

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

T h e C S E T I P r o j e c t

Examination paper for TFY4240 Electromagnetic theory

CHE 611 Advanced Chemical Reaction Engineering

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Matrices and Determinants

Planning for Reactive Behaviors in Hide and Seek

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

ETIKA V PROFESII PSYCHOLÓGA

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

Optimizing Stresses for Testing DRAM Cell Defects Using Electrical Simulation

Redoing the Foundations of Decision Theory

. ffflffluary 7, 1855.

Lower Austria. The Big Travel Map. Big Travel Map of Lower Austria.

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

Dimethyl Ether Production using a Reactive Distillation Process

ADVANCES IN MATHEMATICS(CHINA)

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

New BaBar Results on Rare Leptonic B Decays

A L A BA M A L A W R E V IE W

TELEMATICS LINK LEADS

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Constructive Decision Theory


2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

Sample Exam 1: Chapters 1, 2, and 3

15 hij 60 _ip = 45 = m 4. 2 _ip 1 huo 9 `a = 36m `a/_ip. v 41

Research of Application the Virtual Reality Technology in Chemistry Education

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

A General Procedure to Design Good Codes at a Target BER

New method for solving nonlinear sum of ratios problem based on simplicial bisection

I N A C O M P L E X W O R L D

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Numerical Simulation for the Development of Waste Oil Cavity Incinerator

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

This document has been prepared by Sunder Kidambi with the blessings of

A Study on Dental Health Awareness of High School Students

Winsome Winsome W Wins e ins e WUin ser some s Guide

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

R for beginners. 2 The few things to know before st. 8 Index 31

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=


Optimization of a parallel 3d-FFT with non-blocking collective operations

Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

A Functional Quantum Programming Language

A Shrinking Core Model for Steam Hydration of CaO-Based Sorbents Cycled for CO2 Capture: Supplementary Information

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL

Harlean. User s Guide

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

!!"# $% &" ( )

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Unit 3. Digital encoding

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

Ä D C Ã F D {f n } F,

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

F O R SOCI AL WORK RESE ARCH

Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =

TWO-DIMENSIONAL CUSP ON THE FREE SURFACE AT LOW REYNOLDS NUMBER FLOW. vß (cusp) Ç\ Hassager[1,2], Coutanceau & Hajjam[3], Bhaga & Weber[4] #

Loop parallelization using compiler analysis

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

APPH 4200 Physics of Fluids

Glasgow eprints Service

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

+ 2 S!"#$ %&' ()*+,-./ %581 9:; 2 < :; 5 B7 CCCD>E * = FG H I2JK <LMBN 23O567 +.P QR>SA TUVW)XY > * N Z<LMB23O567[\9]:^9:; H_`a9bc *

3.012 PS 3 THERMO MODEL SOLUTIONS Issued: Fall 05 Not due

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

Transcription:

HWAHAK KONGHAK Vol. 38, No. 5, October, 2, pp. 63-68 (Journal of the Korean Institute of Chemical Engineers) * * S. V. Berezhnoj ** * **on leave from Physical Technical Department, St. Petersburg State Technical University, Russia (2 2 22, 2 7 3 ) Modeling of the Thermal Behavior of an Electric-Vehicle Battery Chang-Yeon Yun, Chee Burm Shin, Cheol-Nam Yang*, Seong-Yong Park* and S. V. Berezhnoj** Dept. of Chem. Eng., Ajou University *Institute for Advanced Engineering **on leave from Physical Technical Department, St. Petersburg State Technical University, Russia (Received 22 February 2; accepted 3 July 2),!"# $%& ' 3( )*+#,-&.. // 1 2345 /67 89 :9; <=>?@; A &.@B, CDE FG&H IJ&?@; KL&M N3# OP&.. QR ST U/V WXY@;Z K U/ [' DE \, ] V ^_\, ]/` &.. a, N Lbc deu/v %L&?f@; Db Sg U/ $%# Kh&H Y@;Z V Wi\, ] jk; l\, ]H &.. m <2 =n S op q ri sn@; tu, ]. Abstract A three-dimensional modeling was carried out to investigate the effects of operating conditions, ambient conditions, and design factors on the thermal behavior of an electric-vehicle(ev) battery. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate was assumed to be uniform throughout battery electrodes. The maximal temperatures within the battery at various operating conditions were calculated in order to check whether the operating temperature of the battery is within acceptable range. In addition, the relation between the surface temperature of the specific region and the maximal temperature of the battery interior was obtained so that the measurement of the surface temperature may be used to predict the maximal temperature of the interior. The results of this study may be useful for the optimal design of the thermal management system of an EV battery. Key words: Modeling, Electric-Vehicle Battery, Thermal Behavior, Finite Element Method E-mail: cbshin@madang.ajou.ac.kr 1.! "# $%&'. ( )* +, HC, NO x, CO -+. / &( # LEV, ULEV1 2! "! 34 California 56 23 789# 3 :-;+ 1%1 <= +(zero emission vehicle) >(?@A '# B5 CD[1]. EF# G HI J# H 2. KL4# <! "# $% &'. M EV(electric vehicle)# lead-acid NH OP QR S>T energy density U35 Wh/kg>( VWP U 1-15 km %X D # YZ. [\! ]^# nickel/metal hydride(ni/ MH) NH OP QR! "'. Ni/MH NH energy density 67 Wh/kg %(VWP 2-3 km)( )* + 1/4-1/3 %X # D E Li-polymer NH1 EV QR# _` abc Z& d e 27 M fgh EV# Ni/MH NH ir h j>( kl! "'[2]. EV# mn =o dn p NH1 qa e?r sh tf # u vg& '. NH wxn y8z {. }>~, z %li>( v h 56 t ƒn z n 8v n 8v>( H, ; && tf '. &ˆ 56 Yi>(# H ŠP Œ wxž 63

64 S. V. Berezhnoj 1 k : "'. Ni/MH NH 56 lead-acid NH tu+& d e [' i u P &! "'[3]. # H R NH ui šw. œ ž : "# simulation program Ÿt. œ( %!, Y ( cell module # 3. Ni/MH NH y 8 z v 1 k : i ª. «'. C ^W Hg Q1 :V«!, H 8v NH ]!z o l 1 ±>(² H 8v z1 % # je>( NH ]! z1 k : "³ «'. 2. # 9Ah Ni/MH( w battery pack y zv 1 Q±>(² =o y u vg. ] : "# ]i Œ. µ_ : " # i& "'. Y ( single cell module# %ll¹ aº zv 1»w³ # ¼_[½'. : i ª ir i %n '¾ '. NH uh# À w uhžá& ` à Ä Šj>( o '. H y u& Ædz tf'. Module 56 su su È!b S'. Fig. 2. Schematic of multilayer casing. Fig. 1n Hg Q l>( Én 9 Ah Ni/MH cell ŸÊ&'. Casingn uh1 ˳ SUS( a "! œ# YÌ(ÍÎ). s yrï8 œ& Ð( ÑÒ & a "'. P! y8# Fig. 1 ÓÔ [Õ& ˆ Ö p ¾ &, & a "! Q&# ŠP vp a "'. &Ø ÙÚ 1 :q Q # & u H šw. TÛ : "# sc 2& Ü'. # H ŽÁ GÝ. &R uh &Þ. QR NH uišw. C ^W e QR# Š(mesh) (element) :1 žç : "S'. u Hßn z à uh Fig. 3. Equivalent thermal resistance networks (a) for the serial resistances and (b) for the parallel resistances. %á! âã äáå( ŽÁ&Þ. &R H æ( à n sý>( : "'[4, 5]. Casing 561 k( ça[ Fig. 2à & uh N s èé 'ê'# j. ¼ : "'. Fig. 3 TÛë j & X, ZN 56# H Ž Á& ÄÂ( Å j>(!b : "!, YN 56# `Â( Å a "# j>( o! g '¾ n Ý>( Ns uh1 g : "'. užá Hg Q Ü 8 v ;wìçn Table 1 TÛyS'. <` ŽÁ 56: k Y > R=R A +R B +R C (1) x ---- = ---- + ---- +----- k Y x A k A x B k B x C k C ( x k A + x B + x C )k A k B k C Y = -------------------------------------------------------------------------------- x A k B k C + x B k C k A + x C k A k B (2) (3) Fig. 1. Schematic diagram of a cell. 38 5 2 1 <Ä ŽÁ 56: k X, k Z > --- 1 ----- 1 1 = ----- R R A R B A k X ( or k Z ) ----------------------------- L 1 + +------ R C A A k A A B k B A C k C = --------------- + --------------- +--------------- L L L (4) (5)

Table 1. Parameters used in calculations ρ --------- g C cm 3 P --------- J k -------------- W g K Tab 8.91.465 Ni electrode 3.97 1.559 MH electrode 4.8 3.199 Vent(Al) 2.7.925 H 2 (1 atm) 8.9741 5 14.34 Separator 1.17 3.161 Casing(SUS).93 2.31 Interior coating 1.35 1.674 Exterior coating 8.27.52 k X ( or k Z ) A A k A + A B k B + A C k = --------------------------------------------------------- C A cm K 7.931 1 1 2.28 1 2 1.634 1 2 2.73 1.722 1 2 5.323 1 3 3.287 1 3 2.77 1 3 1.63 1 1 '¾n cell à module zv 1 QR s %Ý&'. 65 References 9, 12 2, 9 9 1, 11 2, 9 (6) 8v uh# à! užá GÝ>(89 al ì. QR«'. 3. Fig. 5à 6 Hg Q l>( Én 9 Ah Ni/MH cell module C QR finite element mesh1 TÛ ys'. s%ý 5 Œç. E# 1 Galerkin C& QR S![8] cell 56 QR trilinear hexahedral element :# 2,968Ÿ&~ node :# 3,726Ÿ&'. Module 56# symmetry1 &R 5 cell. Q! >T 9 memory R+ ( 3 cell. Q«'. Module QR element :# 1,8Ÿ&~ node :# 11,586Ÿ&'. [# ùà & œ&t,o l& ù# 8v & z j&é! kl # 8vn mesh1 ñ³, n {þ# mesh1 w³ «'. cell cellq& ò T ρc p ------ = ( k T) + Q t Ý (7) uh1 TÛy# matrix kà H y8 Y 8í@ tu+. TÛy# Q # '¾ & Ý>( œ '[6]. k = k X k Y k Z Q = ---------- 1 a a i a U a dv+ a c i c U c dv V cell Va a cell i app V H rxn r Vc Cell. ˆ Ÿ1 `Â( Å 12 V1 : " Eî j. module&é 8ê# Fig. 4 ŸÊ1 TÛyS'. Module QR s%ýn cell 56à Ç'. Fig. 4 [Õ& u È i vg. module p ï# su & ðq a "! cell cellq&# 4Ÿ ñ(( # òéó. ôõ ö¾>( ². Eça ø½'. èé & 8v lr,r binding 8v# uh ì. ùúa û>(² È 1?vü TÛ T³ «'. &e òéó f# ý = n ý& 1mm( l@ü m e & 8v uh# laminar {þ "'# %>( g ì. QR«'[7]. Tÿ (7) (8) (9) Fig. 5. Finite element mesh of a cell. Fig. 4. Schematic diagram of a module. Fig. 6. Finite element mesh of a module. HWAHAK KONGHAK Vol. 38, No. 5, October, 2

66 S. V. Berezhnoj éó»w # n ç { & >å( È 1?vü!b : " «'. gn SUN UltraSPARC 143 Workstation :V«>~, # CPU timen cell 56 1.5v, module 56 36v&S'. 4. Single cell. Hg Q# Ü i :# H t u+ NH1 Ï8 = z&'. H tu+n N H Àà Œ èé ßé³ '. èé # Ý (9)(89 1C( sh e tu+. /(.1[W/cm 3 ]) >( Œ tu+ ±ã :V«'. P! z# èé & å( 2 o C1 / z( 1 o C, 3 o C 56!b Hg Q1 $«'. &e QR NH Ï8œ uhß :ìn.5[w/cm 2 rk]&'[9]. Fig. 7# al Œ %ll¹ ß. e zv 1 TÛë j&'. [ ¼ : "Õ& NH ]!z# H & "#, Y8»w # j. : "'. P! cell l8# : {. }_ H Ën H. èé l8( u& Hß. ¼ : "'. Fig. 8# cell y Ns >( z a!³»w #1 TÛy /'. (a) 56# XN s >( z 1 TÛë j&'. "6 p ¾ ; & ( 'ê e : qi>(# Uo &1 [&T #. &$S! &# < E«'. YN s z 1 TÛë (b) 56# %%ü "6 #. &$S!, ZN s (c)# : {. }_ 5.5 cm 8^ ]! z1»w«! H & ït# Z 13.4 cm 8^ # l& ù z 1 [«'. Table 2# tu+&.1,.2,.4 W/cm 3 Ç e z 1, 2, 3 o C 56 cell y ]! ]Ž zì& a!³»w & #1 TÛë j&'. tu+& n 56#, & wxžj& QR : "E tu+& ' 56# single cell Çé (.!b > )'# j. *³ k : "'. Fig. 8. Isothermal surfaces and temperature distributions along x, y and z directions in a Ni/MH cell. Fig. 7. Isothermal surfaces distributions at steady state. 38 5 2 1 Module 56single cell 56à(.1[W/cm 3 ], 2 o C 1 />( zà tu+. ùúa ~ Hg Q1 :V«'. šü

Table 2. Maximal and minimal temperatures of a cell for various heat generation rates and air temperatures Heat generation rate[w/cm 3 ] Air temperature [ o C] Max. temperature of a cell[ o C] 67 Min. temperature of a cell[ o C] q=.1 T=1 32.3 17.2 T=2 41. 27.2 T=3 52.3 37.2 q=.2 T=1 54.6 24.3 T=2 64.6 34.3 T=3 74.6 44.3 q=.4 T=1 99.3 38.7 T=2 19.3 48.7 T=3 119.3 58.7 Fig. 1. Maximum temperature distributions along Y axis and corresponding temperature of tabs. Fig. 9. Surface temperature distribution of a module at steady state. module 56pÔ ï ß* su cell cellq& \?. QR # òéó e»w # & H zv a º {. 3q# +,[½'. Fig. 9# tu+&.1[w/cm 3 ], z 2 o C 56 %ll¹ zv 1 TÛë j&'. -Ž su È 1 +,[, Fig. 9 [# ùà & " 8. a "# su n â cell/ # z v l@ {. # j>( TÛ! ñ cell /# U³ {. 3qT 1 cell89# P {. 3q 2# j>( TÛ'. $ ( module ]! zzn '3, 3 cell TÛT# j.!b e su q# i 4 '# j. ¼ : "'. z ÆÇw. & # ( sc& 2 aa j>( Y'. '¾>( òéó»w # È 1 +,[, 1mm X D # n &E. - # u+n ¾. ¼ : "'. Fig. 9 6 & GzK&.»w! l@ü ç565 j. : "#, &# òéó # uhß& 7 ä # u& 89T e&'. Fig. 9 cell cellq& z»w # %1 [! È %1 ¼_ : "'. NH z z : 1 ;a ³ b NH y8 ]! z1 %A '. Ø <Vü ]! n z»w # Zn H y8,, Y8&'. & 8vn cell y8& e z %& W <x'. èé cell y8 z % = Ï8 š% 8v z1 thermistor1 &R %±>(² y8»w # ]!z1 > : " # j & Ü'. Ï8 z1 %# 8vn cell case, Y8 TH 8v& K%h : "'. # H 8v z à ]! z?@# Z YN s z v 1 Fig. 1 & ±>(² 8v zt š%8 œz1 %# je>( moduley ]! z v 1 k : " «'. & A# NH?H sh Yoy dn p tu( z : 1 ;að 56 NH :B Ž A NH1 a : "# MA( QRh : "'. 5. HR NH ui W. k cell à module. simulation program& Ÿt S'. Cell module 56 # 3 C& QR S>~, NH ui šw.?vü T Ûy g QR # :1 ž& À NH w uh ŽÁ& ` à ÄÂ( Å j>( o«'. &ˆ. NH?rsHC n Œ = zà n ç& NH ui W 3q# {. Q«'. # 'p Œ èó ]r] z1 ±> (² cell& z : y # 81 Y : " «>~, Ü èé ( Öq 8. 81!b : " ³ «'., % Dî H y8 ]!z1 8^EF %& R& Ï8 š%8v ze. %±>(² NH ]!z1 k : "³ z a Ü MA( &R : "³ «'. $) QR module su q# u. È i>( W# T ]!z module,8v»w # j>(!b e u vg# q i4 ¾. ¼ : "S'. & Å # H R NH ]i u P Ÿ t R MA( GRh :". j>( Y'. HWAHAK KONGHAK Vol. 38, No. 5, October, 2

68 S. V. Berezhnoj # g 8 G7 H ŸtQvA, + Ã H Ÿt Q>( SIJ'.Ž, S. V. Berezhnoj # '99 ˆ_ Ã K qq(99ˆ 6-16) _ L @1 }½IJ'. a : anode c : cathode x :x-direction y :y-direction z : z-direction A : heat-transfer area [m 2 ] a a : interfacial area of solid-phase particles per unit volume of porous anode [m 2 /m 3 ] a c : interfacial area of solid-phase particles per unit volume of porous cathode [m 2 /m 3 ] a cell : geometric electrode surface area per unit volume of cell [m 2 /m 3 ] C p : cell heat capacity at constant pressure [J/kg K] i a : local interfacial current per unit area of solid-phase particle for anode [A/m 2 ] i c : local interfacial current per unit area of solid-phase particle for cathode [A/m 2 ] i app : applied cell current per unit area of projected electrode [A/m 2 ] k i : thermal conductivity along i-direction(i=x, y, z) [W/m 2 K] Q : heat-generation rate per volume of the cell [J/m 3 s] r : reaction rate per unit volume of the cell [mol/m 3 s] U a : local enthalpy potential of anode [V] U c : local enthalpy potential of cathode [V] V : cell potential [V] V cell : volume of the cell [m 3 ] Η rxn : heat of reaction, 2.891 5 [J/mol] ρ : cell density [kg/m 3 ] 1. California Air Resource Board: Low-Emission Vehicles/Clean Fuels and New Gasoline Specifications-Progress Report, (1989). 2. Crompton, T. R.: Battery Reference Book, Butterworths, London(199). 3. Wu, M. S., Wang, Y. Y. and Wan, C. C.: J. of Power Sources, 74, 22 (1998). 4. Bennett, C. O. and Myers, J. E.: Momentum, Heat, and Mass Transfer, 3rd ed., McGraw-Hill, New York, NY(1982). 5. Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: Transport Phenomena, John Wiley & Sons, Inc., New York(196). 6. Botte, G. G., Johnson, B. A. and White, R. E.: J. Electrochem. Soc., 146(3), 914(1999). 7. Gartling, D. K.: Comput. methods Appl. Mech. Engrg., 12, 365(1977). 8. Hughes, T. J. R.: The Finite Element Method, Prentice-Hall, New Jersey, NJ(1987). 9. Perry, R. H.: Perry s Chemical Engineers Handbook, 6th ed., Mc- Graw-Hill, New York, NY(1984). 1. Welty, J. R., Wicks, C. E. and Wilson, R. E.: Fundamentals of Momentum, Heat, and Mass Transfer, 3rd ed., John Wiley & Sons, New York, NY(1984). 11. Reid, R. C., Prausnitz, J. M. and Poling, R. E.: The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY(1987). 12. Dean, J. A.: Lange s Handbook of Chemistry, 13th ed., McGraw- Hill, New York, NY(1973). 38 5 2 1