PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

Similar documents
Statistical Modeling for Circuit Simulation

BIPOLAR JUNCTION TRANSISTOR MODELING

About Modeling the Reverse Early Effect in HICUM Level 0

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Automotive Power CAD. Statistical Simulation Methodology for a Smart Power Technology

Charge-Storage Elements: Base-Charging Capacitance C b

Status of HICUM/L2 Model

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

BJT Biasing Cont. & Small Signal Model

Investigation of New Bipolar Geometry Scaling Laws

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

Regional Approach Methods for SiGe HBT compact modeling

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Bipolar junction transistor operation and modeling

Transistor Characteristics and A simple BJT Current Mirror

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

BJT Biasing Cont. & Small Signal Model

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

Homework Assignment 09

Bipolar Junction Transistor (BJT) - Introduction

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Chapter 2. - DC Biasing - BJTs

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Accurate transit time determination and. transfer current parameter extraction

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

****** bjt model parameters tnom= temp= *****

Chapter 5. BJT AC Analysis

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Chapter 2 - DC Biasing - BJTs

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Transistor's self-und mutual heating and its impact on circuit performance

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

CHAPTER 7 - CD COMPANION

Tutorial #4: Bias Point Analysis in Multisim

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

Circle the one best answer for each question. Five points per question.

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Junction Bipolar Transistor. Characteristics Models Datasheet

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

EE105 - Fall 2006 Microelectronic Devices and Circuits

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

University of Pittsburgh

Non-standard geometry scaling effects

Semiconductor Device Simulation

Didier CELI, 22 nd Bipolar Arbeitskreis, Würzburg, October 2009

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

Structured Electronic Design. Building the nullor: Distortion

Homework Assignment 08

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

Lecture Notes for ECE 215: Digital Integrated Circuits

Chapter 9 Frequency Response. PART C: High Frequency Response

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

Different Strategies for Statistical Compact Modeling MOS-AK Dresden

Chapter 10 Instructor Notes

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

BFP193. NPN Silicon RF Transistor*

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Lecture 4: Feedback and Op-Amps

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

Biasing the CE Amplifier

A new transit time extraction algorithm based on matrix deembedding techniques

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

13. Bipolar transistors

Working Group Bipolar (Tr..)

BFP196W. NPN Silicon RF Transistor*

ECE 255, Frequency Response

HICUM release status and development update L2 and L0

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

HICUM/L2 version 2.2: Summary of extensions and changes

Prof. Paolo Colantonio a.a

Lateral SiC bipolar junction transistors for high current IC driver applications

Chapter 13 Small-Signal Modeling and Linear Amplification

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

Electronic Circuits Summary

The Common-Emitter Amplifier

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

EECS 105: FALL 06 FINAL

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Memories Bipolar Transistors

1 Introduction -1- C continuous (smooth) modeling

At point G V = = = = = = RB B B. IN RB f

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Symbolic SPICE TM Circuit Analyzer and Approximator

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014

Application Report. Mixed Signal Products SLOA021

Device Physics: The Bipolar Transistor

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Transcription:

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA Wolfgang Kraus Atmel Germany wolfgang.kraus@hno.atmel.com 6th HICUM Workshop, Heilbronn (Germany), June 2006 c WK Jun 12th, 2006 1 / 21

Outline c WK Jun 12th, 2006 2 / 21

roots in digital design Corner models Approach used often similar topology 2 highly correlated figures of merit : speed & power simplified : V t = I C leads to fast & slow corner models possibly good enough for slew rate but what about hysteresis of Schmidt trigger phase margin offset voltage headroom of an amplifier depends on design analog design knowhow c WK Jun 12th, 2006 3 / 21

something more flexible is needed Corner models Approach used but on solid physical base proposed approach allows wcs/bcs simulation, definable by designer on top of that simulation of local ( mismatch ) variation for selected devices simulation of global ( process ) variation sweep of process parameter c WK Jun 12th, 2006 4 / 21

Parameters 1 Parameters 2 Example 1 T : Technology parameters ( doping, layer thickness,...) S : Specific electrical parameters ( sheet res., cap. per area,...) G : Geometric parameters ( design & TDR ) E : Electrically measurable data ( E-test, PCM ) M : Model parameters T G S DUT E M c WK Jun 12th, 2006 5 / 21

why statistics on P={T,S}? Parameters 1 Parameters 2 Example 1 (P,G) only rational basis for process variations and mismatch no need to specify correlations during life cycle of technology changes occur in process flow ( P) and layout rules ( G) makes retargeting easier P = P nom + P G + P L (w, l) P G set external to models common to all instances deterministic ( corners ) or random ( process variation ) P L random ( mismatch, local variation ) evaluated per instance c WK Jun 12th, 2006 6 / 21

To get familiar with the idea, consider simplest case: Parameters 1 Parameters 2 Example 1 low ohmic poly resistor R = 2 RCS W + RSH L W +DW G : W, L P : RSH, RCS, DW E : R c WK Jun 12th, 2006 7 / 21

For the variance of the poly resistor we have : Example 1 contd. σ 2 R = ( ) 2 ( R RSH σrsh 2 + R DW ) 2 σ 2 DW + ( ) 2 R RCS σrcs 2 two ways to use : POV : calculate σ 2 R BPOV : from known variances of RSH, RCS, DW observe σ 2 R calculate sensitivities solve for variances of RSH, RCS, DW s.t. nonnegativity constraint ([5]) same approach for mismatch and process variation c WK Jun 12th, 2006 8 / 21

Use physics based nominal model at start Process to model HICUM example internal BJT external BJT We use TRADICA for model generation Shift nominal model to center if neccessary Enhanced version of TRADICA generates models incl. mapping equations For examples of mapping relations see ([3], [4]) Uses Taylor-series expansion of mapping relations Up to now sufficiently accurate c WK Jun 12th, 2006 9 / 21

Part of HICUM model for SPECTRE : Process to model HICUM example internal BJT external BJT subckt N00705B110H c b e s parameters + b e0 =0.500E-06 l e0 =0.700E-06 + r nbei l = r nbei rm nsic*r nbei sm nsic/sqrt(b e0*l e0) + r nbei = r nbei g nsic+r nbei l + a be0 l = a be0 rm nsic*a be0 sm nsic/sqrt(l e0) + a be0 = a be0 g nsic+a be0 l Q c b e s MOD model MOD bht type=npn tnom=27 updatelevel=1 + c10 = 2.364E-33-7.680E-34* r nbei + 6.674E-27* a be0 + ich = 8.956E-04 + 1.277E+03* a be0 + cjei0 = 2.023E-15 + 9.636E-16* r nbei + 2.900E-09* a be0 c WK Jun 12th, 2006 10 / 21

Process to model HICUM example internal BJT external BJT Process Parameters SGPM Parameters HICUM Parameters int. base doping Ic, BF c10, qp0, cjei0, rbi0 ( r nbei ) 1 Cje, Rb cjep0 int. base width Ic, BF qp0, tbvl, thcs ( r wb ) Rb int. collector doping Cjc, tf cjci0, tbvl, thcs ( r nci ) IKF, IT F vptci, t0 base current Ib, BF ibeis, ireis ( r jbei ) emitter size Ic, Ib, Cje c10, qp0, ich ( a be0 ) 2 tf cjei0, cjci0, t0 int. collector width IKF, IT F vptci, thcs, rci0 ( a wc ) latb, latl 1 r : relative variation 2 a : absolute variation c WK Jun 12th, 2006 11 / 21

Process to model HICUM example internal BJT external BJT Process Parameters SGPM Parameters HICUM Parameters ext. collector doping Cjc cjcx0 ( r ncx ) buried layer doping Rc rcx ( r nbl ) substrate doping Cjs cjs0, iscs ( r nsu ) Observations : external BJT parameters (mostly) uncorrelated at least 8 correlated internal BJT parameters ( single device ) now imagine you ve 10 or 100 BJT models... physics-based approach much more efficient c WK Jun 12th, 2006 12 / 21

refers to direct model parameter extraction from PCM data Open loop extraction Loop closure usual candidates : V T H, DL, DW, BF, V AF,... no guarantee your simulations are o.k. when the model contains published values from EDR reasons : many methods to extract physical parameters exist, giving different results different models for same device may need different parameters relation between electrical observables and model parameters is approximate goal of modeling : as good as possible representation of electrical behavior, not of physical parameters c WK Jun 12th, 2006 13 / 21

refers to indirect or closed-loop procedure ([1]) mimick PCM conditions as close as possible same device geometry Open loop extraction Loop closure same bias same data reduction simulate PCM test compare distributions from PCM test and simulation repeat cycle regularly, even for mature technology c WK Jun 12th, 2006 14 / 21

The following slides show selected results. All simulations have been done using HICUM/L2 with SPECTRE. Overview Cbe Vbe matching PCM correlations sim. correlations Large area BE-Capacitance of VNPN V BE -mismatch of VNPN-pair measured correlations of VPNP simulated correlations of VPNP c WK Jun 12th, 2006 15 / 21

PCM 8105 Devices Technology: UHF6S NPN E(50x50)um2 PCM Test: CBE_N50 LSL,USL=3Sigma Values Normal Q Q Plot Overview Cbe 0.0 0.2 0.4 0.6 0.8 1.0 LSL PCM USL PCM 13 14 15 16 17 CBE_N50 Studentized Order 3 2 1 0 1 2 3 2 0 2 Normal Quantiles Vbe matching PCM correlations 800 Montecarlo Simulations Normal Q Q Plot sim. correlations 0.0 0.2 0.4 0.6 0.8 1.0 LSL Simulation USL Simulation Studentized Order 3 2 1 0 1 2 3 13 14 15 16 17 3 2 1 0 1 2 3 CBE_N50sim Normal Quantiles c WK Jun 12th, 2006 16 / 21

PCM 8866 Devices Technology: UHF6S NPN E(0.5x9.7)um2 PCM Test: DVBE_NN1_085 LSL,USL=3Sigma Values Normal Q Q Plot Overview Cbe 0 500 1000 1500 2000 LSL PCM USL PCM 1e 03 5e 04 0e+00 5e 04 1e 03 dvbe Studentized Order 3 2 1 0 1 2 3 4 2 0 2 4 Normal Quantiles Vbe matching PCM correlations 2500 Montecarlo Simulations Normal Q Q Plot sim. correlations 0 500 1000 1500 2000 LSL Simulation USL Simulation Studentized Order 3 2 1 0 1 2 3 1e 03 5e 04 0e+00 5e 04 1e 03 3 2 1 0 1 2 3 dvbesim Normal Quantiles c WK Jun 12th, 2006 17 / 21

1.4e 05 2.2e 05 12 14 16 18 IC_DD1_085 0.00045 36 B_DD1_085 34 N = 8190 Bandwidth = 2.872e 07 30 32 Overview Cbe Vbe matching PCM correlations sim. correlations IB_DD1_085 N = 8190 Bandwidth = 8.617e 06 1.4e 05 1.8e 05 2.2e 05 20 0.00060 1.8e 05 0.00075 Technology: UHF6S VPNP4 PCM_Measurements:DD1 E(0.5x9.7)um2 CBEB 26 28 20 VAFI_DD1 12 14 16 18 N = 8190 Bandwidth = 0.3052 0.00045 0.00055 0.00065 0.00075 26 28 30 32 34 36 N = 8190 Bandwidth = 0.2458 c WK Jun 12th, 2006 18 / 21

Technology: UHF6S VPNP4 Process Simulations:DD1 E(0.5x9.7)um2 CBEB 2.0e 05 13 14 15 16 IC_DD1_085sim 0.00055 1.8e 05 0.00065 1.6e 05 0.00045 IB_DD1_085sim 1.9e 05 26 28 30 32 34 36 38 B_DD1_085sim N = 2500 Bandwidth = 1.482e 07 Overview Cbe Vbe matching PCM correlations sim. correlations N = 2500 Bandwidth = 6.508e 06 1.6e 05 16 VAFI_DD1_sim 13 14 15 N = 2500 Bandwidth = 0.3471 0.00045 0.00055 0.00065 26 28 30 32 34 36 38 N = 2500 Bandwidth = 0.1265 c WK Jun 12th, 2006 19 / 21

discussed statistical BJT models using HICUM ( & SGPM ) based on physics and fundamental process parameters no overhead for correlations VNPN & VPNP covered incl. mismatch limitations of corner models discussed Loop closure discussed to do extend statistics to s-parameters additional mismatch teststructures needed c WK Jun 12th, 2006 20 / 21

[1] C.C. McAndrew, Compact Device Modeling for Circuit Simulation, CICC 1997, pp. 151-158 [2] C.C. McAndrew, Statistical Modeling for Circuit Simulation, Interntl. Symp. on Quality Electronic Design, ISQED 03 [3] P.G. Drennan and C.C. McAndrew, A Comprehensive MOSFET Mismatch Model, IEDM 1999, pp. 167-170 [4] M. Schroter, H. Wittkopf, and W. Kraus, Statistical Modeling of High-Frequency Bipolar Transistors, invited paper, BCTM 05 [5] Lawson, Hanson, Solving Least Squares Problems, Prentice Hall, 1974 [6] O Riordan, Recommended Spectre Monte Carlo Modeling Methodology,, www.designers-guide.org c WK Jun 12th, 2006 21 / 21