Grafting polystyrene on Cellulose (CNC) by surface initiated. Atom Transfer Radical Polymerization (SI ATRP)

Similar documents
Alain Dufresne. Nanocellulose. From Nature to High Performance Tailored Materials OE GRUYTER

Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure

THERMAL AND MECHANICAL PROPERTIES OF PLA /PEG BLEND AND ITS NANOCOMPOSITES

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites

SS Vorlesung Polymermaterialien Polymerisationsmethoden

Macromolecules on Nano-Outlets Responding to Electric Field and ph for Dual-Mode Drug Delivery

Chemical Engineering Seminar Series

Supplementary Figures

Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization

Nanostructured Materials and New Processing Strategies Through Polymer Chemistry

Effect of Molecular Structure of Side Chain Polymers on "Click" Synthesis of Thermosensitive Molecular Brushes

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Cellulose Nanocrystals

Supplemental Information

PART I FUNDAMENTALS OF SUPRAMOLECULAR POLYMERS COPYRIGHTED MATERIAL

Assembled Hollow Metal Oxide Nanostructures for Water Treatment

Radical Polymerization and Click Chemistry. Surfaces using Gamma Irradiation. Supporting Information*

Polymerisation of Sodium 4-Styrenesulfonate via Atom Transfer Radical Polymerisation

9:20-10:00 Industry Speaker: Dr. Steve Brown NOVA Chemical Canada Title:NOVA Cehmical s Advanced Sclairtech TM

Presented by : Chloé Maury, Chemistry Master s Claude Daneault, Professor Khalil Jradi, Research associate

Marriage of Graphene and Cellulose for Reinforced Composite Preparation Zaiton Abdul Majid, Wan Hazman Danial and Mohd Bakri Bakar

Surface Modification of Cellulose Nanocrystal for Advanced Applications

The influence of oxide nanaoparticles on the thermal properties of polymer matrix

Supplementary Information

(865) Buehler 567,

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media

Supporting Information

Tunable thermo-responsive water-dispersed multi walled. carbon nanotubes

Synthesis of Silica/Polystyrene Nanocomposite Particles by Miniemulsion Polymerization

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Cellulose nanomaterials, processing methods and applications

Solutions for Assignment-8

Preparation and Characterization of Polymer TiO 2 Hybrid Nanocomposites Via In-situ Polymerization

Polymers 2017; doi: 1. Structural Characterisation of the Prepared Iniferters, BDC and SBDC

Synthesis of Nanoparticle Copolymer Brushes via

Innovative. Technologies. Chemie des Klebens Chemistry of Adhesives. Dr. Jochen Stock, Laboratory Manager CRL Germany: Neuss, November 27 th, 2013

SURFACE COVALENT ENCAPSULATION OF MULTI-WALLED CARBON NANOTUBES BY POLYMER GRAFT

Self-Oscillating Nano-Gel Particles

Supporting Information

Nanocomposites based on cellulose nanofibers: preparation methodologies and applications. Carmen S. R. Freire

CHAPTER 3 EFFECT OF COLLOIDAL SILICA DISPERSIONS ON THE PROPERTIES OF PDMS-COLLOIDAL SILICA COMPOSITES

formation and structural color

NRT 16: Hetero-structured Polymer Nanoparticles for Toner Materials

EXPLANATION OF THE CONTRIBUTIONS

Supplementary Information

Study on the Glass Transition Temperature of Polymer Brushes on Silicon Wafer Introduction Experimental

This is a repository copy of All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization.

Modeling and Parameter Estimation of Interpenetrating

Counteranion-Mediated Intrinsic Healing of Poly(Ionic Liquid) Copolymers

Functionalization of Cellulose Nanocrystals with PEG-Metal- Chelating Block Copolymers via Controlled Conjugation in Aqueous.

Supporting Information. Precise Synthesis of Poly(N-Acryloyl Amino Acid) Through

Modeling and Computation Core (MCC)

SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION

CONTROL OF THE INTERPHASE INTERACTION AND MORPHOLOGY IN THE ORGANIC-INORGANIC POLYMER NANOCOMPOSITES

Effect of combined sulfuric and hydrochloric acid hydrolysis on the morphology and properties of bacterial cellulose nanocrystals

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites

France. September COST FP1205: Innovative applications of regenerated wood cellulose fibres

Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent

Copper-Mediated Atom Transfer Radical Polymerisation (ATRP) of Acrylates in Protic Solution.

Report on Preparation of Nanotemplates for mab Crystallization

Arkema presents its product range for Nanomaterials

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

A Hydrophilic/Hydrophobic Janus Inverse-Opal

Insitu Polymerisation Of Styrene Using Nanoclay And Optimization Of Strength Using Central Composite Design

Supplementary Information

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil

Studies on Furan Polymer Concrete

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 40% midterm, 60% final report (oral + written)

Rational design of a biomimetic glue with tunable strength and ductility

Synthesis and Characterization of Grafted Polystyrene with Acrylic Acid Using Gamma-Irradiation

Supporting Information

Towards Biocompatible Shell Cross-Linked Micelles

Supplementary Material for. Concentration Dependent Effects of Urea. Binding to Poly-N-isopropylacrylamide Brushes:

Preparation and Characterization of Organic/Inorganic Polymer Nanocomposites

Fabrication of Quaternary Ammonium Chloride-functionalized Poly hydroxyurethane Films

Semi-Additive Process for Low Loss Build-Up Material in High Frequency Signal Transmission Substrates

Supporting Information

Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution

Comparison of water adsorption properties of cellulose and cellulose nanocrystals studied by near-infrared spectroscopy and gravimetry

POLYMER COATED FERRITE NANOCOMPOSITES SYNTHESIZED BY PLASMA POLYMERIZATION

Supporting information for

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects

Supporting Information

By: Lexa Graham, B. Sc.Chemistry

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene

Pulsed Plasma Polymerization of Nanocellulose / Maleic Anhydride:

VINNOL SURFACE COATING RESINS PRODUCT OVERVIEW

Macromolecular Chemistry

Supporting Information. Surface Functionalized Polystyrene Latexes using Itaconate based Surfmers

Lecture No. (1) Introduction of Polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

CREATING TOMORROW S SOLUTIONS HEAT-SEALABLE COATINGS I PRINTING INKS I INDUSTRIAL COATINGS VINNOL SURFACE COATING RESINS PRODUCT OVERVIEW

Detonation Nanodiamond Suspensions

POSS for Surface Modification and and Corrosion Prevention

Nanotechnology Fabrication Methods.

Supporting Information

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

MATERIALS SCIENCE POLYMERS

Polymerveredelung durch Nanotechnologie:

Transcription:

Grafting polystyrene on Cellulose (CNC) by surface initiated Abstract Atom Transfer Radical Polymerization (SI ATRP) Zhen Zhang, Gilles Sebe, Xiaosong Wang Grafting polymers on the surface of nanoparticles is a very promising way to prepare hybrid nanomaterials or nanocomposites. if the polymer grafting is in a controlled way, including grafting density, chain length and dispersity, well designed nanocomposites can be obtained. In this paper, polystyrene was grafted on the surface of Cellulose NanoCrystal (CNC) nano-initiator by surface initiated Atom Transfer Radical Polymerization (SI ATRP), which was confirmed by FTIR, TGA, DTG, DSC and DLS. To initiate SI ATRP on CNC, it is necessary to introduce initiating sites on the surface of CNC to prepare CNC nano-initiators first. 1 Introduction Grafting soft polymer onto the surface of rigid nanoparticles by covalent bonds is a very promising bottom up approach to prepare nanocomposites[1, 2], which can not only take fully advantage of the synergistic effect of the soft and rigid parts to obtain optimal balance between durability, mechanical properties and thermal properties, but also introduce novel functionalities [3, 4]. The diversity of nanoparticles and polymers offers a big resource pool of new ideas. Fabrication of nanomaterials with designed structures is essential for nanotechnology. However, grafting polymers on the surface of nanoparticles in a controlled way to prepare well designed nanocomposites is still a challenge, including controlled grafting density, chain length and dispersity of grafted polymer. Cellulose nanocrystal (CNC) is extracted from cellulose by acid hydrolysis with diameter from 5 to 20 nm and length from 50 to 500 nm which depends on different resources of cellulose and extraction method. Due to the excellent properties of CNC [5], for example, renewable, biocompatible, excellent mechanical properties with low density, potential to modification due to abundant hydroxyl group on the surface, self-assembly to chiral nematic crystal and low thermal expansion coefficient, CNC have drew a lot of attention in recent years in the applications of nano-metal particles stabilizer, transparent substrate for electronic, nano-template, reinforcing agent for nanocomposites, emulsifier for Pickering emulsion, and so on. With the scalable production in the demonstration plant, the cost of CNC will decrease dramatically in the near future, and the applications of CNC will be exploited much more in industry field. However, the hydrophilic nature of CNC surface limits its further application due to the poor miscibility with hydrophobic materials[6]. Sometimes it is necessary to modify the surface for specific applications. The modification of the surface also can introduce some other novel functionality. Grafting polymer on CNC is a very

effective and promising method to by modify the surface and introduce novel functionalities[7]. Since the development of the Atom Transfer Radical Polymerization (ATRP) in 1995[8], it has become a very important method and widely use living polymerization technique to prepare well-controlled polymeric chains. A variety of monomer can be polymerized by ATRP with well-controlled molecular weight and low dispersity. ATRP has also been initiated efficiently and extensively on the surface of different kinds of substrate (defined as surface initiated (SI) ATRP) to yield hybrid materials by grafting polymers precisely. SI ATRP is a grafting from method, which can obtain high graft density of polymer on the surface when compared with grafting to method [9]. 2 Results and discussion 2.1 Preparation of CNC nano-initiator: CNC-Br Before grafting polymer on CNC by SI ATRP, initiating sites Br were introduced on the surface of CNC. BIBB was used to modify the surface of CNC with TEA and DAMP as the catalyst. In the modification process, the dispersibility of CNC was crucial for the modification. So it is necessary to disperse CNC in DMF by sonication. As shown in Figure 1, compared with the FTIR of CNC, the new strong absorption peak at 1739 cm -1 was attributed to the C=O of the modified moieties, which indicated the successfully modification of CNC by BIBB. Figure 1. FTIR of CNC and CNC-Br The thermal stability of CNC and CNC-Br were also characterized by TGA and DTG, as shown in Figure 2. As CNC was more hydrophilic than CNC-Br, CNC showed a little more weight loss than CNC-Br below 100 C due to absorbed moisture. Normally the main decomposition temperature range of cellulose is between 320 to 400 C with the maximum degradation temperature (Tmax) at 390 C [10]. The sulfuric ester groups on the surface of CNC catalyzed the thermal degradation at low temperature [11]. The main decomposition temperature range of CNC was between

250 to 320 C with the onset decomposition temperature (Tonset) at 280 C and Tmax at 297 C respectively. The obviously decrease of thermal stability of CNC-Br was due to the introduction of Br, which may eliminate HBr upon heating and the HBr formed catalyzed decomposition of CNC at lower temperature [10]. Figure 2. (A) TGA of CNC and CNC-Br; (B) DTG of CNC and CNC-Br 2.2 Grafting PS on CNC nano-initiators by SI ATRP As the initiator sites on the surface of CNC are negligible to some extent when compared with sacrificial initiator, it is easy to tailor the length of grafted polymer by changing the initial molar ratio of monomer to sacrificial initiator and the conversion. Moreover, the addition of sacrificial initiators will increase the concentration of Cu 2+ in the system, which limits the termination to obtain a better controlled ATRP. Although the molecular weight of free polymer initiated by sacrificial initiator was not exactly the same with the grafted polymer, the free polymer was still a tool to study the grafted polymer. Now sacrificial initiator has been extensively used in SI ATRP to have a better controlled ATRP and provide some information about the grafted polymer. In this paper, EBiB was used as the sacrificial initiator in SI ATRP system. From the comparison of FTIR spectra of CNC-Br, CNC-g-PS 2h (reaction time was 2 h) and the free PS, as shown in Figure 3, it was easy to conclude that PS was successfully grafted on CNC-Br by SI ATRP. After grafting PS, the peaks in CNC-g-PS FTIR spectra, for example, 3025 cm -1 (C-H stretching of PS), 1494 cm -1 (C=C stretching of PS), and 700 cm -1 (C-H bending of PS), were the characteristic peaks of PS.

Figure 3. The FTIR spectra of CNC-Br, CNC-g-PS 2 h and free PS The kinetic research of the free PS was studied first. Figure 4A showed the monomer conversion and ln (M0/Mt) vs reaction time curve, in which the monomer conversion and ln (M0/Mt) was calculated by 1 H NMR. The liner increase of ln (M0/Mt) vs time indicated a first-order kinetic with a constant concentration of the radical. Figure 4B showed the Mn and dispersity of free PS vs monomer conversion curve, and the Mn and dispersity was determined by SEC. The Mn increased linearly with the monomer conversion, and all the dispersity values (6-1.13) are below 1.15. The kinetic research results demonstrated the well-controlled living polymerization of free PS by ATRP. A 0.30 Monomer conversion 0.25 0.20 0.15 0.10 5 monomer conversion ln ([M 0 ]/[M t ]) Fit line for ln ([M 0 ]/[M t ]) 0.3 0.2 0.1 ln([m 0 ]/[M t ]) Mn B 15000 10000 5000 Mn Dispersity Linear fit for Mn 1.4 1.2 Dispersity 0 0 1 2 3 4 5 6 7 8 Time (h) 0 0 5 0.10 0.15 0.20 0.25 0.30 Monomer conversion Figure 4. The kinetic research of free PS by ATRP (A) Monomer conversion and ln(m0/mt) vs reaction time; (B) Mn and dispersity of free PS vs monomer conversion

A 0.8 0.6 Free PS 2h Free PS 4h Free PS 6h Free PS 7.3h PS Mn=250000 B 2.5 2.0 CNC-Br free PS 2H free PS 4H free PS 6H free PS 7.3H Weight 0.2 Deriv. Weight 1.5 0.5 100 200 300 400 500 100 200 300 400 500 600 Temperature ( o C) Temperature ( o C) Figure 5. The TGA (A) and DTG (B) vs reaction time of free PS CNC-Br CNC-g-PS 2H by ATRP free PS 7.3H by ATRP 2.8 2.4 CNC-Br CNC-g-PS 2H by ATRP free PS 7.3H by ATRP 0.8 2.0 Weight 0.6 Deriv. Weight 1.6 1.2 0.8 0.2 100 200 300 400 500 600 Temperature ( o C) 100 200 300 400 500 600 Temperature (h) Figure 6. The TGA and DTG of CNC-g-PS The thermal stability of the free PS and CNC-g-PS was characterized by TGA and DTG. As shown in Figure 5A, the Tonset of the free PS increased a little bit with the increase of the Mn of the PS. Then Mn of PS used here as a comparison was 250, 000 g/mol. The main decomposition temperature range of PS was from 350 to 450 C (Figure 5B). Figure 6 showed the TGA and DTG of CNC-g-PS. After grafted with PS, the thermal stability of CNC-g-PS increased a lot. 3 Conclusion BIBB was employed to modify CNC to prepare CNC-Br nano-initiator for SI ATRP. And then PS was grafted on CNC-Br by SI ATRP with presence of sacrificial initiator. The successful grafting was confirmed by FTIR, TGA, DTG and so on. 4 References 1. Harrisson, S., et al., Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto Cellulose Microcrystals. Biomacromolecules, 2011. 12(4): p. 1214 1223. 2. Tsai, Y. and W. C. Wang, Polybenzyl methacrylate brush used in the top down/bottom up approach for nanopatterning technology. Journal of Applied Polymer Science, 2006. 101(3): p. 1953 1957.

3. Nicole, L., et al., Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 2014. 6(12): p. 6267 6292. 4. Sanchez, C., et al., Applications of advanced hybrid organic inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011. 40(2): p. 696 753. 5. Tingaut, P., T. Zimmermann, and G. Sebe, Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. Journal of Materials Chemistry, 2012. 22(38): p. 20105 20111. 6. Eyley, S. and W. Thielemans, Surface modification of cellulose nanocrystals. Nanoscale, 2014. 6(14): p. 7764 7779. 7. Wang, H.D., et al., Graft modification of crystalline nanocellulose by Cu (0) mediated SET living radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2015. 53(24): p. 2800 2808 %@ 1099 0518. 8. Wang, J. S. and K. Matyjaszewski, Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition metal complexes. Journal of the American Chemical Society, 1995. 117(20): p. 5614 5615. 9. Marutani, E., et al., Surface initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer, 2004. 45(7): p. 2231 2235. 10. Sui, X., et al., Synthesis of Cellulose graft Poly(N,N dimethylamino 2 ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules, 2008. 9(10): p. 2615 2620. 11. Zoppe, J.O., et al., Poly(N isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface Initiated Single Electron Transfer Living Radical Polymerization. Biomacromolecules, 2010. 11(10): p. 2683 2691.