ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

Similar documents
Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

, which yields. where z1. and z2

Physics 2010 Motion with Constant Acceleration Experiment 1

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Trigonometric Ratios Unit 5 Tentative TEST date

AP Statistics Notes Unit Two: The Normal Distributions

Hubble s Law PHYS 1301

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

Lead/Lag Compensator Frequency Domain Properties and Design Methods

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

B. Definition of an exponential

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Solution to HW14 Fall-2002

Lecture 6: Phase Space and Damped Oscillations

Review Problems 3. Four FIR Filter Types

PHYS 314 HOMEWORK #3

WYSE Academic Challenge Regional Mathematics 2007 Solution Set

1 The limitations of Hartree Fock approximation

Revised 2/07. Projectile Motion

Differentiation Applications 1: Related Rates

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

CHAPTER 8b Static Equilibrium Units

5 th grade Common Core Standards

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Figure 1a. A planar mechanism.

1 PreCalculus AP Unit G Rotational Trig (MCR) Name:

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

Dead-beat controller design

Math 9 Year End Review Package. (b) = (a) Side length = 15.5 cm ( area ) (b) Perimeter = 4xside = 62 m

Chapter 3 Kinematics in Two Dimensions; Vectors

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Lecture 5: Equilibrium and Oscillations

Electromagnetic Radiation

Lecture 7: Damped and Driven Oscillations

NUMBERS, MATHEMATICS AND EQUATIONS

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

Pre-Calculus Individual Test 2017 February Regional

Activity Guide Loops and Random Numbers

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Trigonometry, 8th ed; Lial, Hornsby, Schneider

Thermodynamics and Equilibrium

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Q x = cos 1 30 = 53.1 South

Math Foundations 10 Work Plan

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Preparation work for A2 Mathematics [2018]

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Math 105: Review for Exam I - Solutions

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

We can see from the graph above that the intersection is, i.e., [ ).

LECTURE 15: LINEAR ARRAYS PART III

37 Maxwell s Equations

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

Unit 14 Thermochemistry Notes

Five Whys How To Do It Better

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

Computational modeling techniques

General Chemistry II, Unit I: Study Guide (part I)

Preparation work for A2 Mathematics [2017]

Hypothesis Tests for One Population Mean

Thermodynamics Partial Outline of Topics

6.3: Volumes by Cylindrical Shells

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

CHAPTER 2 Algebraic Expressions and Fundamental Operations

Chapter 2 GAUSS LAW Recommended Problems:

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

Pattern Recognition 2014 Support Vector Machines

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

PLEASURE TEST SERIES (XI) - 07 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T.

Accelerated Chemistry POGIL: Half-life

ENGI 4430 Parametric Vector Functions Page 2-01

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

AP Physics Kinematic Wrap Up

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

arxiv:hep-ph/ v1 2 Jun 1995

Higher. Specimen NAB Assessment

1 Course Notes in Introductory Physics Jeffrey Seguritan

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Equilibrium of Stress

Transcription:

ECE 538/635 Antenna Engineering Spring 006 Dr. Stuart Lng Chapter 6 Part 7 Schelkunff s Plynmial 7

Schelkunff s Plynmial Representatin (fr discrete arrays) AF( ψ ) N n 0 A n e jnψ N number f elements in array Nte: each element can nw have a different excitatin cefficient A n ψ kd csθ + β 73

Schelkunff s let jnψ e AF( ) A + A + A + + A N N S, array factr fr a N-element N array is a plynmial f degree N- it has N- rts (ers) 74

Schelkunff s Can write: AF AN ( )( )( 3) ( N-) Where n are the rts f the plynmial 75

Schelkunff s Y Advantage -plane Shws explicitly the ers in the radiatin pattern (nulls) Can als think f it as the prduct f (N-) tw element arrays ψ X 76

Schelkunff s Hw t make this representatin useful??? Lk at -element array AF jψ + e + AF Fr kd π d λ There are n sidelbes! -π π ψ A, A 77

Schelkunff s Take the prduct f tw f these arrays AF ( + ) ( + ) + + 3-element array with magnitudes f : : Sharper beam, but still n sidelbes A, A, A 78

Schelkunff s Cntinue AF ( + n ) Cefficients f this plynmial are the BINOMIAL COEFFICIENTS AF Ak k Gives an N-element array w/ n sidelbes A k nck n! k!( n k)! Similar t filters r transfrmers f type Butterwrth, Maximally flat, r Binmial 79

BINOMIAL COEFFICIENTS Ν Ν Ν 3 Ν 4 Ν 5 Ν 6 Ν 7 Ν 8 3 3 4 6 4 5 0 0 5 6 5 0 5 6 7 35 35 7 (Add the tw numbers abve each entry) 80

Schelkunff s Placement f nulls Use factred frm f AF Example Place null at θ 6º In phase, β 0 3-element array λ/4 spacing (but nt unifrm) Just use amplitude shaping fr null placement ψ kd csθ (since β 0) 8

Schelkunff s Example ψ kd csθ S ne rt f plynmial at ψ ψ. 45π e j.45π Let ψ π λ cs 6 λ 4 π (.9).45π One mre er arbitrary make it symmetric ψ ψ. 45 π j.45 π e 8

AF ( - )( - ) j. 45π j. 45π ( e )( e ) j.45π j.45π ( e + e ) + ( π j π π j π) + + + + cs0.45 sin0.45 cs0.45 sin0.45 ( π ) + cs0.45 0.33 AF A + A + A Schelkunff s Example Amplitude cefficients A ; A.33; A 83

N 3 d λ/4 kd π/ β 0 NOTES Schelkunff s Example There is really a cheat here.. Allwing the center element t have a negative value is like having a β 80 Als, can chse nd. er in ther manners: e.g. if yu nly want ne null Chse ψ t be utside visible range, s then it will nt shw up as a null in the pattern θ 54 θ 6 A A -.33 A 84

Graphical aid Schelkunff s Example j.45π e Since e jψ All s have unit magnitude and are n unit circle in the cmplex plane (nly differ in phase) - - e j.45π jψ e VR ψ ) AF VISIBLE RANGE kd ψ kd π π ψ 85

Schelkunff s Example As mves arund unit circle frm ψ - π/ t π/ AF is prduct f lengths f the tw chrds - and - Gives maximum at ψ 0 and nulls at ψ ±.45 π VR e j.45 π - - e VR ψ ) jψ VISIBLE RANGE kd ψ kd π π ψ e j.45 π 86

Schelkunff s Example j.55π e - - j.45π e jψ e VR ψ ) Previus example, but want nly ne null at 6 ψ Chse.45π VR and ψ.55π (utside VR) θ 6 87

Schelkunff s Example Relatin between θ and As θ ψ kd csθ + β e jψ varies frm t θ 0 ψ s kd + β e j ( kd +β ) θ π ψ kd + β f e j ( kd +β ) 88

Schelkunff s Example Relatin between θ and Angular range f ψ kd is θ 0 ψ s Im kd + β ψ kd + β is VISIBLE RANGE VR jψ e ψ ) Re part f circle that crrespnds t physical angles 0 θ π θ π ψ f 89

Bradside VISIBLE RANGE kd ψ kd β 0 Schelkunff s kd kd VR ψ ) Arbitrary Phase Shift β kd + β VR ψ ) Same extent f VISIBLE RANGE but rtated by β kd + β kd + β ψ kd + β 90

Schelkunff s Visible Range and Spacing Extent f VR depends n spacing kd VR kd VR ψ ) ψ ) kd kd Smaller spacing bradside Larger spacing bradside (can verlap) 9

Schelkunff s Unifrm Array An (all A n ' s equal) AF N e n j ( n ) ) ψ e e jnψ jψ N ( but nt ) - because f factr Has N rts f N in denminatr m m ± j π N e m,,3, 9

Schelkunff s GRAPHICAL calculatin f AF frm rts d d d 3 - - - 3 d d e jψ ψ ) d 4-4 3 d 3 d 4 AF d d d3 d4 4 As pint mves arund the unit circle, yu get nulls in the AF when it hits the rts; abslute max at ; side lbe max. abut half way between rts. ψ 0 93

Schelkunff s GRAPHICAL calculatin f AF frm rts Can apprximate by measuring r calculating actual chrd lengths α α / d sin d α α ( ) d sin( ) s length f chrd can be calculated if yu knw the angular extent 94

Example 3 5-element unifrm array (4 th. rder plynmial with 4 rts) Schelkunff s GRAPHICAL calculatin f AF frm rts 7 Im 7 ψ ) 7 Re m π ± 5 e, e 4π ± 5 3 7 7 ( ψ ± 7, ± 44 ) 4 d λ π λ kd π λ ψ s kd π ψ kd π f π π 4π 5 4π 5 π 5 π 5 VR ψ ) 95

Schelkunff s AF Example 3 ψ ) 4π 5 π 5 π 0 π 5 4π 5 π θ 90 θ 80 θ ) 96

Schelkunff s Example 3 Abslute maxima at ψ 0 44 44 d d 3 7 d d 4 7 0 ψ ) d d d 7 sin 4 44 sin d3 AF d d.75.90 d d3 4 4.999 97

44 d Example 3 08 d Sidelbe maxima halfway between 7 and 44 7 0 Schelkunff s ψ ) d d d 36 sin d 08 sin 80 sin 3 4 SLL d d d 3.68.0 d 0.68 4.36 44 d 3 d 4 SLR.36 5.0 0.47 7 SLR.4 [db] 98

Schelkunff s Example 3 As we saw in ne f the special cases n slide 6.47, t large a spacing gives t large a VR t prduce a secnd main beam (GRATING LOBE) Fr n prtin f Grating Lbe extend VR nly t last rt 4π 5 4π 5 π 5 π 5 VR ψ ) 99

Schelkunff s Example 3 VR 8π r 5 π 5 t 8π r 5 π 5 Fr mre general N-element array 8π π kd d 5 λ 4 dmax λ 0. 8λ 5 ( fr N 5) max d N λ N max 00

Schelkunff s Example 3 Reduced Sidelbes Since height f sidelbe is determined by distances t rts, if we mve rts clser tgether, the sidelbe level will g dwn. Fr bradside must cluster rts clser t ψ ±π. This enlarges main beam area and bradens the beamwidth. Purpse Try t reduce SLL (side lbe level) t -0 db 5-element unifrm array (rts at ± 7, ± 44 ) st. Sidelbe at -3.5 db nd. Sidelbe at -7.9 db 44 44 08 d d 3 d 7 d 4 0 ψ ) 7 0

Trial & errr : try ± 87, ± 49 s rts are 6 apart instead f 7 SLL -8.5 db SLL.3 db Im 87 Schelkunff s Example 3 Trial & errr : This suggests that and 3 are t clse, but and are nt clse enugh try ± 88, ± 47 s rts are 59 and 66 apart Im 88 49 6 ψ ) 6 Re 47 59 ψ ) 59 Re 3 49 6 3 47 59 4 87 4 88 0

Schelkunff s Cnvergence Example 3 Im 89 Trial & errr : try ± 89, ± 45.5 s rts are 56.5 and 69 apart 45.5 3 45.5 56.5 56.5 ψ ) 56.5 Re SLL SLL -0 db 89 4 03

AF Schelkunff s Example 3 Rts at: ±89 ±.55 rad ±45.5 ±.54 rad ( - )( - )( - )( - ) 3 4 ( j.55 )( j.54 )( j.55 e e e )( e j.54 ) ( cs( 89 ) + ) ( cs( 45.5 ) + ) 4 3 +.6 +.95 +.6 + 04

Schelkunff s Example 3 Rts at: ±7 ±.56 rad ±44 ±.53 rad AF ( - )( - )( - )( - ) 3 4 j.56 j.53 j.56 j.53 ( e )( e )( e )( e ) ( cs( 7 ) + ) ( cs( 44 ) + ) 4 3 + + 05

Schelkunff s Example 3 Nte that Relative current cefficients Center element strngest.6.95.6 Symmetric taper N lnger unifrm array Magnitudes tapered t give lwer SLL at expense f brader beamwidth 06

Schelkunff s Example 3 Summary UNIFORM REDUCED SIDELOBES BINOMIAL Cefficients.6.95.6 4 6 4 Sidelbe Level -3.5 db -0 db N sidelbes 07

ECE 538/635 Antenna Engineering Spring 006 Dr. Stuart Lng Chapter 6 Part 8 Chebyshev s Arrays 08

CHEBYSHEV ARRAYS Ideally wuld like t design fr narrw beamwidth and lw sidelbe level, unfrtunately, nrmally ding ne results in the deteriratin f the ther. Frming the AF frm the Chebyshev plynmials ptimies the relatinship between beamwidth and sidelbe level. 09

CHEBYSHEV POLYNOMIALS T ( ) T ( ) T T T T ( ) 3 ( ) 4 3 3 4 ( ) 8 8 4 + ( ) 5 3 6 0 5 5 + 0

CHEBYSHEV Recurrence relatin Or functinally : T m eg.. T4 ( ) T ( ) T ( ) m m ( ) ( 3 ) ( 4 3 ) 8 4 8 + e. g. m n ( ) T [ T ( ) ] T [ T ( ) ] T T 4 m n ( ) T [ T ( ) ] n ( ) 4 ( 4 + ) 4 8 4 8 T + m ( )

CHEBYSHEV T m ( ) Fig. 6.

Prperties f CHEBYSHEV Plynmials T m ( ). is f degree m in. Fr m even (dd) cntains in even (dd) pwers nly 3. All plynmials pass thrugh the pint, and either, r, (specifically the pint [, ( ) ] m ) ( ) ( ) ( ) [ ] ( ) 4. Over the interval + all plynmials m > have values between - and + ( extrema ±) ( ) 5. All rts (ers) m > 0 ccur within [ +] 3

Prperties f CHEBYSHEV Plynmials 6. Extrema at π p cs m p,,3, in [,] ers at ( p ) π + cs p 0,,, in m [,] 7. Fr > ; T ~ m m 8. T m ( ) cs( mcs ) + ( ) ( ) T csh mcsh < r >+ m [Nte: csh ln ± ( ) 4

CHEBYSHEV Chebyshev plynmial is ptimum in the sense that it minimies the distance between the last er and the value f that crrespnds t a certain value f the plynmial while keeping < ver + T m 5

CHEBYSHEV is largest er f T m is the value f that gives T m R T m ( ) R.0 6

CHEBYSHEV S fr a given value f R, the distance, is the smallest pssible value fr all plynmials f rder m Basic idea is t use the plynmial ver the range (-, +) as the side lbes and as far as necessary int the > regin fr the main lbe 7

CHEBYSHEV Side lbe levels are all equal Can either specify () Side lbe level belw main beam (in db) () Angular width f main beam Need t fit this plynmial with the general AF fr a symmetric, nn-unifrm array 8

CHEBYSHEV Frm text (pp. 36-38) Fr even number f elements M ( AF) nm M n an cs kdcsθ n 9

CHEBYSHEV Frm text (pp. 36-38) Fr dd number f elements M+ M + ( AF) ( ) nm+ n ( ) a cs n kdcsθ n With amplitude f center elements a 0

CHEBYSHEV let π d u csθ λ k d csθ (fr even) (fr dd) M ( AF) a cs ((n ) u) nm n M + ( AF) cs ( ) nm+ n n n ( ) a n u

CHEBYSHEV Rewriting each harmnic in terms f csu ( 0 u) cs ( u) csu cs cs cs cs ( u) cs u 3 ( 3 u) 4cs u 3csu 4 ( 4 u) 8cs u 8cs u +

CHEBYSHEV csu If let, then Chebyshev Plynmials cs cs cs cs cs ( 0) ( ) T ( u ) T ( ) ( u ) T ( ) 3 ( 3u ) 4 3 T ( ) 3 ( ) ( ) mu T m 3

CHEBYSHEV Want t match ( ) cs Chebyshev plynmials T t series Example 6.9 ( p 335 Balinis) 0-element Chebyshev w/ 6 [db] sidelbes, even # elements 4

Example 6.9 CHEBYSHEV d d d d λ 4 0.767 λ 0 3λ 4 0.767 λ.085 Fig. 6. Tschebyscheff plynmial f rder 9 (a) amplitude (b) magnitude 5

Example CHEBYSHEV 5-element Chebyshev w/ 0 [db] sidelbes (dd # f elements) M M + 5 ( ) ( ) a cs ((n ) u) n M+ n 5 n n ( AF ) n 5 cs u + a cs 4u ( ) ( ) ( 4 AF a + a cs u + a 8cs u 8cs u + ) n 5 a + a 3 AF AF [6.6] 3 3 6

Example CHEBYSHEV ( ) Find the pint such that T m R(sidelbe rati) where m # elements - want t use regin ( ) as the sidelbes null nearest + ( and the regin as the mainlbe ) 7

CHEBYSHEV Example Substitute csu / ( AF ) n 5 a + a / a + 8a 3 4 / 4 + 8a 3 / + a 3 4 4 ( AF ) ( a a + a ) + ( a 8a )( / ) + ( 8a )( / ) n 5 3 3 3 4 using T ( ) 8 8 4 + and equating cefficients [6.69] 8

9 CHEBYSHEV CHEBYSHEV 4 4 3 3 8 8 a a 4-4 4 4 4 8 8 3 3 a a a a ( ) 4 4 4 4 4 3 4 4 3 3 + + + + + a a a a a a Example Example

Example CHEBYSHEV -0 [db] sidelbes 0lg R lg R R 0 0 definitin R csh csh[ mcsh R mcsh csh R csh m csh csh R m ] (want inverse) 30

Example CHEBYSHEV fr ur case m 4 csh csh 4 0.93 r withut using csh functin (where p #elem -) ( ) ( ) p R + R + R R ( ) ( ) 4 0 + 99 + 0 99 4. 93 p 3

Example CHEBYSHEV Calculate excitatin cefficients nrmalie such that a 3 a3.798 4 a 3 a 3.0 a 4a 3 4 4.50 a + a a3 a 5.407.704 fr dd # elements, center element a a 3 a a 3.609.93 3

Example CHEBYSHEV like reduced side lbe example (-0 db) with mving rts (trial and errr) 5-element array with rts at ± 89 ; ± 45.5 cefficients.0 /.6 /.95/.6 /.0 33

Example CHEBYSHEV T 4 ( ) R 5-element T 4 ( ) Depending n spacing d, different prtins f T 4 ( ) will be used fr the AF. largest used will be smallest will be θ 0 λ d + ψ ) 34

Example CHEBYSHEV AF Redraw in rectangular crdinates π d cs u cs csθ λ 4π 5 π 5 π 0 π 5 4π 5 π ψ ) θ 0 π d cs λ kd cs csθ θ 80 θ 90 θ ) 35

CHEBYSHEV Examples d d d λ 0.707 4 λ 0 3 λ 0.707 4 T m πd extends frm cs λ which crrespnds t 0 θ 90 kd vs. S visible range n plt ψ 0 36

CHEBYSHEV fr Chebyshev w/ largest pssible spacing w/ GRATING LOBES want t utilie Chebyshev plynmial up t, but nt beynd - with want d max λ π cs cs cs - u π d λ max cs π d λ cs θ 37

CHEBYSHEV Apprximatins fr Beamwidth and Directivity (fr Chebyshev nt near endfire and SLL -0 t -60 db).) Calculate beamwidth f unifrm array f same # elements and same spacing Θ h cs cs λ θ.443 cs cs θ +. 443 L + d L λ + d r use Fig. 6- t apprximate [6.a] 38

CHEBYSHEV.) Calculate the beam bradening factr f f + 0.636 R csh [ ] (csh R ) π [6.4a] r read frm Fig. 6-4a 3.) BWCHEBY f BWUNIFORM 39

CHEBYSHEV Fig. 6-4a Beam bradening factr fr Chebyshev arrays. 40

CHEBYSHEV Fig. 6.4b Directivity f Chebyshev arrays. 4

CHEBYSHEV Directivity D R λ + ( R ) f L + d Or use Fig. 6-4b D 0.5 Θ h Even mre apprximately [like a gain/bandwidth prduct] Rule f thumb : HPBW 00 D 4

CHEBYSHEV Previus example Fr Unifrm 5-element, λ d L + d.5λ 5-element Cheby 0 [db] λ d R SLL 0 bradside Θ h cs cs λ.433 L + d.433 cs cs.5 λ.433 L + d.433.5 00. 79.8 0.4 43

CHEBYSHEV fr 0 [ db] SLL f.0 Θ 0. 4 h D + R λ ( R ) f + ( 99) L + d 0 ().5 4.93 r D 0.5 Θ h 4.97 Cmpare with 5-element BINOMIAL HPBW.06.53 rad N 30.4 D.77 N 3.96 44

CHEBYSHEV Example [Prblem 6.47 Balinis Textbk] Chebyshev 3-element array dλ SLL - 0 [db] R 0 ( ) ( ) 0 + 99 + 0 99. 345 45

CHEBYSHEV Example ( AF ) a cs( ( n ) u) 3 n ( AF ) a + a cs( u) 3 n a+ a u ( AF ) ( ) 3 + ( ) cs a a acs u a a + acs csθ π d λ 46

CHEBYSHEV Example csu / and equate t T ( AF ) ( ) / 3 + ( ) n a a a equating ceff. a a a a a 4.5 and a / a a 5.5 (.345) 47

CHEBYSHEV Example Example Or nrmalied : Excitatin Cefficients a a 0.88.0.0 /.636 /.0 Center element excitatin a 48

CHEBYSHEV Example Example thus ARRAY FACTOR ( AF ) + ( ) θ + 3 πd πd 0.88.0 cs cs 0.8 cs csθ λ λ ( AF ) + ( ) ( ) + a a u a a a u cs 3 cs 49

CHEBYSHEV Example Example T find nulls fr d λ ( AF ) ( π θ ) 3 0.88 + cs cs 0 ( π θ ) cs cs 0.88 π θ ( ) cs n cs 0.88 n n ± 44.9 ±.59 [ rad] als at ±.59 ± π n [ rad] ± 5. ± 3.754 [ rad] als at ± 3.754 ± π n [ rad] 50

5 CHEBYSHEV CHEBYSHEV 66.3 3.754 cs 3.7 3.754 cs 6.7, 53.3 3.754 cs 53.3.59 cs 6.7.59 cs 3.7, 66.3.59 cs + ± ± ± + ± ± ± π π θ π π θ π θ π π θ π π θ π θ n n n n n n nulls at Example Example 6.7, 3.7, 66.3, 53.3 θ n 6 3 66 53

CHEBYSHEV Example Maxima ( AF ).88 0.88 + cs( π csθ ) 3 max m ( π θ ) cs cs m π csθm cs () 0 ± 360 θ θ θ m m m 0 π π π π π cs 90 cs 0 cs 80 5

CHEBYSHEV Example relative maxima als exist between 53.3 and 66.3 and between 3.7 and 6.7 take derivative f (AF)3 and set 0 d ( AF) dθ 3 sin sinθ θ m ( π csθ )( π sinθ ) m 0 0,, m 80 sin m ( π csθ ) m 0 0 (abs. max. frm abve) 53

CHEBYSHEV Example Example sin m m ( π csθm ) 0 π csθm sin ( 0) 0 csθ 0 θ cs ( 0) 90 m m π csθ m π csθ m m ± π θ m ± π θ cs m cs ± ± mπ, 60 ( ± ) 0,80 m,0 s we find relative max. at 60 and 0 This prcedure des nt yield any nulls because the nulls ccur at axis crssings [Fr larger arrays this prcedure will be mre difficult] (need alternative ) 54

CHEBYSHEV Example [use knwn facts abut Cheby plynmials] (alternate methd) 3-element array 0 0 uses Cheby T ers at ± 0. 707-3 - - 0 3 -.345 -.707.707.345 55

CHEBYSHEV Example csu π cs d csθ λ fr cs d λ; ( π csθ ) n ±.345; 0.707.345 nulls at ± 0.305 ± 0. 707 π csθ cs n π csθ cs n n θ cs n θ cs ( ± 0.305).6 ± π ( ± 0.305).877 ± π 66.3 ± 7.45 ± 07.5 53.3 r 3.7 r 6.7 ±.6 [ rad] ±.877 [ rad] 56

CHEBYSHEV Example frm graph max. at 0, ± ±. 345 fr ( π θ ) 0 cs cs 0 m + π θ ( ) π π m ± ± 3 m θm cs ± DOES NOT EXIST cs m cs 0 ± m 0 π csθm θm cs 60, 0 57

Example fr cs ± CHEBYSHEV ( π csθ ) ± π csθ cs ( ± ) m ±.345 m ± mπ m m m 0 π csθ π csθ m m π csθ m 0 θ m ± π θ m ± π θ m cs cs ( 0) 90 ( ± ) 0, 80 ( ± ) DOES NOT EXIST cs (same answers as befre) 58

Example 3 CHEBYSHEV [Prblem 6.33 Balinis Textbk] Binmial 4-element array d3λ/4 excit. ceff.,3,3, π 3λ kd λ 4 a 3 a N M 3π 4 M 59

Example 3 CHEBYSHEV ( AF) ( ) 4 M π d an cs (n ) u ; u csθ λ n ( AF) + 4 a csu a cs 3u 3csu+ cs3u 3 3csu+ 4cs u 3csu 3 3 π d 4cs u 4cs csθ λ 60

Example 3 CHEBYSHEV nulls when ( AF ) 4 π d θ λ 3 4cs cs 0 π d λ θ θ ( ) ( n + ) cs n cs 0 ± 0,,, cs n ± (n + ) λ d π n 6

Example 3 CHEBYSHEV θ fr n n m 0 3λ d 4 + cs ± 3 θ θ n n ( n ) cs cs ± 3 n 0,,, 48. 3.9 ( ± ) DOES NOT EXIST, -π π θ kd kd 3π 6

DOLPH-TSCHEBYSCHEFF (N. f Elements:0, Spacing:0.5 Wavelength) 0.9 0.8 NORMALIZED EXCITATION COEFFICIENTS 0.7 0.6 0.5 0.4 0.3 Side lbe level 80 db Side lbe level 60 db Side lbe level 40 db Side lbe level 30 db Side lbe level.05 db Side lbe level 0 db 0. 0. 0 - -0.8-0.6-0.4-0. 0 0. 0.4 0.6 0.8 ARRAY LENGTH (λ) 63

8 DOLPH-TSCHEBYSCHEFF (N. f Elements:0, Spacing:0.5 Wavelength) DIRECTIVITY HPBW 50 7 40 DIRECTIVITY (db) 6 30 HPBW (degrees) 5 0 4 0 0 0 30 SIDE LOBE LEVEL (db) 64