Jádrové odhady gradientu regresní funkce

Similar documents
Jádrové odhady regresní funkce pro korelovaná data

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β

Local Polynomial Regression

Computation of Information Value for Credit Scoring Models

O Combining cross-validation and plug-in methods - for kernel density bandwidth selection O

Local linear multiple regression with variable. bandwidth in the presence of heteroscedasticity

Bootstrap metody II Kernelové Odhady Hustot

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation. Petra E. Todd

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction

Nonparametric Density Estimation (Multidimension)

Local linear multivariate. regression with variable. bandwidth in the presence of. heteroscedasticity

MEASUREMENT OF SPECIFIC HEATS OF FOODS STUFFS WITH THE AID OF CHEAP DIGITALIZED CALORIMETER MĚŘENÍ MĚRNÝCH TEPEL POTRAVIN POMOCÍ LEVNÉHO

Nonparametric regression with martingale increment errors

Error distribution function for parametrically truncated and censored data

Boosting kernel density estimates: A bias reduction technique?

A tour of kernel smoothing

Adaptivity to Local Smoothness and Dimension in Kernel Regression

ASYMPTOTICS FOR GENERAL MULTIVARIATE KERNEL DENSITY DERIVATIVE ESTIMATORS

Modelling Non-linear and Non-stationary Time Series

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression

A New Method for Varying Adaptive Bandwidth Selection

Semiparametric modeling and estimation of the dispersion function in regression

A Novel Nonparametric Density Estimator

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

Gaussian Process Introduction

Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2014, vol. LX article No. 1989

Plug-in Approach to Active Learning

Nonparametric Methods

Additive Isotonic Regression

4 Nonparametric Regression

Robust forecasting of non-stationary time series DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Applied Econometrics (QEM)

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

IEOR 165: Spring 2019 Problem Set 2

Simple and Efficient Improvements of Multivariate Local Linear Regression

Non-parametric Inference and Resampling

LOCAL POLYNOMIAL REGRESSION ON UNKNOWN MANIFOLDS. Department of Statistics. University of California at Berkeley, USA. 1.

Simple Linear Regression (Part 3)

NONPARAMETRIC DENSITY ESTIMATION WITH RESPECT TO THE LINEX LOSS FUNCTION

Integral approximation by kernel smoothing

RESEARCH REPORT. ÚTIA AVČR, v.v.i., P.O.Box 18, Prague, Czech Republic Fax: (+420) ,

UNIVERSITÄT POTSDAM Institut für Mathematik

SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES. Liping Zhu, Mian Huang, & Runze Li. The Pennsylvania State University

Kernel density estimation of reliability with applications to extreme value distribution

On Asymptotic Normality of the Local Polynomial Regression Estimator with Stochastic Bandwidths 1. Carlos Martins-Filho.

Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2009, vol. LV, article No. 1683

A Note on Data-Adaptive Bandwidth Selection for Sequential Kernel Smoothers

Introduction to Nonparametric Regression

S T A T I S T I C S. Jan Ámos Víšek 2008/09. Institute of Economic Studies, Faculty of Social Sciences Charles University, Prague

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model.

STAT5044: Regression and Anova. Inyoung Kim

Bootstrap tuning in model choice problem

Positive data kernel density estimation via the logkde package for R

Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density

Local Polynomial Modelling and Its Applications

CORRECTION OF DENSITY ESTIMATORS WHICH ARE NOT DENSITIES

PREWHITENING-BASED ESTIMATION IN PARTIAL LINEAR REGRESSION MODELS: A COMPARATIVE STUDY

Ch 3: Multiple Linear Regression

Automatic Local Smoothing for Spectral Density. Abstract. This article uses local polynomial techniques to t Whittle's likelihood for spectral density

Segmentace textury. Jan Kybic

Smooth functions and local extreme values

Convergence rates for uniform confidence intervals based on local polynomial regression estimators

(b) Prove that the following function does not tend to a limit as x tends. is continuous at 1. [6] you use. (i) f(x) = x 4 4x+7, I = [1,2]

Ch 2: Simple Linear Regression

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo

CALCULATING DEGREES OF FREEDOM IN MULTIVARIATE LOCAL POLYNOMIAL REGRESSION. 1. Introduction

Lecture 15. Hypothesis testing in the linear model

New Local Estimation Procedure for Nonparametric Regression Function of Longitudinal Data

Discussion Paper No. 28

Adaptive Kernel Estimation of The Hazard Rate Function

Weighted Least Squares

Optimal global rates of convergence for interpolation problems with random design

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

A Primer of Nonparametric Econometrics and Their Applications to Economics and Finance

Inverse Statistical Learning

A finite element solution for the fractional equation

Linear Regression Model. Badr Missaoui

arxiv: v1 [stat.me] 25 Mar 2019

Statistics & Data Sciences: First Year Prelim Exam May 2018

Introduction to Regression

Decompositions of Matrices with Relational Data: Foundations and Algorithms

ON SOME TWO-STEP DENSITY ESTIMATION METHOD

SUPPLEMENTARY MATERIAL FOR PUBLICATION ONLINE 1

Independent and conditionally independent counterfactual distributions

Function of Longitudinal Data

Nonparametric Regression

Simple Linear Regression

JEREMY TAYLOR S CONTRIBUTIONS TO TRANSFORMATION MODEL

Time Series and Forecasting Lecture 4 NonLinear Time Series

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD RIGORÓZNÍ PRÁCE Mgr. Jonáš Volek

OPTIMAL POINTWISE ADAPTIVE METHODS IN NONPARAMETRIC ESTIMATION 1

ON THE CHOICE OF TEST STATISTIC FOR CONDITIONAL MOMENT INEQUALITES. Timothy B. Armstrong. October 2014 Revised July 2017

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i

A STUDY OF PRE-VALIDATION

Approximation Theoretical Questions for SVMs

Measuring the fit of the model - SSR

Nonparametric Density Estimation. October 1, 2018

13 Endogeneity and Nonparametric IV

Transcription:

Monika Kroupová Ivana Horová Jan Koláček Ústav matematiky a statistiky, Masarykova univerzita, Brno ROBUST 2018

Osnova Regresní model a odhad gradientu Metody pro odhad vyhlazovací matice Simulace Závěr

Regresní model Uvažujeme regresní model Y i = m(x i ) + ε i, i = 1,..., n, Y 1,..., Y n měření m(x i ) regresní funkce v bodě x i x i nenáhodné prediktory v [0, 1] d chyby měření ε 1,..., ε n jsou i.i.d. s E(ε i ) = 0, var(ε i ) = σ 2 > 0

Lokálně lineární odhady Regresní funkci nahradíme polynomem prvního stupně a pomocí vážených nejmenších čtverců odhadneme regresní koeficienty β Y 1 1 (x 1 x) T ( ) ε 1 β0. =.. + β Y n 1 (x 2 x) T. 1 ε n W = diag(k H (x 1 x),..., K H (x n x)), kde K H (x) = H 1/2 K(H 1/2 x), H H D je diagonální vyhlazovací matice diag(h 2 1, h2 2 ).

Odhad regresních koeficientů Odhad regresních koeficientů metodou vážených nejmenších čtverců je ˆβˆβˆβ = (X T WX) 1 X T WY. Zavedeme značení s 0 = 1 n K H (x i x), s 1 = 1 n K H (x i x)(x i x), n n S 2 = 1 n τ 0 = 1 n i=1 i=1 n K H (x i x)(x i x)(x i x) T, i=1 n K H (x i x)y i, i=1 ˆβˆβˆβ = ( s0 s T 1 s 1 S 2 ) 1 ( τ0 τ 1 ) τ 1 = 1 n n K H (x i x)(x i x)y i. i=1

Odhad regresní funkce a gradientu Odhad regresní funkce m(x, H) = ˆβ 0 = 1 nc (τ 0 s T 1 S 1 2 τ 1 ). Odhad gradientu regresní funkce Dm(x, H) = β ˆ 1 = 1 nc kde c = s 0 s T 1 S 1 2 s 1. ( ( S 1 2 s 1τ 0 + S 1 2 I 2 c + s 1 s T 1 S 1 2 ) ) τ 1,

Vlastnosti odhadu Kvalitu odhadu posuzujeme pomocí střední integrální kvadratické chyby MISE(H) = E Dm(x, H) Dm(x) 2 dx = IV(H) + ISB(H), IV(H) = Var Dm(x, H)dx, ISB(H) = E Dm(x, H) Dm(x) 2 dx, kde je Eukleidovská norma.

Metoda křížového ověřování (Stone 1974) Odhad ĤCV,1 minimalizuje CV(H) = 1 n n Dm i (x i, H) Y (1) 2, i=2 i kde Y (1) i je parciální diference v x i a Dm j (x j, H) značí odhad gradientu regresní funkce bodě x j bez použití bodu x j.

Lepskiho metoda (Goldenshluger and Lepski 2011) Odhad ĤL,1 minimalizuje kde L(H) = ÂIV(H) + ÂISB(H), ÂIV(H) = n 1 H 1/2 tr{h 1 V (DK)}ˆσ 2, ˆσ 2 = 1 n (Y i Y i 1 ) 2, 2n 2 i=2 [ ] 1 n ÂISB(H) = max Dm(x i, G) G H D n Dm(x i, H) 2 ÂIV(G) i=1 +

Navrhovaná metoda Využijeme parciální derivace AMISE AMISE(H) h 1 h 1 + AMISE(H) h 2 h 2 = 0 AIV(H) AISB(H) = 0 Hlavní myšlenka metody spočívá v řešení rovnice ÂIV(H) ÂISB(H) = 0

Navrhovaná metoda - Odhad ÂIV(H) Odhad ÂIV(H) je stejný jako v případě Lepskiho metody, tedy ÂIV(H) = n 1 H 1/2 tr{h 1 V (DK)}ˆσ 2, ˆσ 2 = 1 n (Y i Y i 1 ) 2. 2n 2 i=2

Navrhovaná metoda - Odhad ÂISB(H, x) ÂISB(H) = ÂSB(H, x) = 1 E Dm(x, H) Dm(x, H) 2 dx = 1 n τ ε 0 = 1 n τ ε 1 = 1 n c 2 S 2 2 {( I 2 c + s 1 s T 1 S 1 2 n ÂSB(H, x i ), i=1 ) τ ε 1 s 1 τ ε 0 } 2, n K H (x i x)( m(x i, Ĝ) Y i), i=1 n K H (x i x)(x i x)( m(x i, Ĝ) Y i) i=1 a Ĝ je odhad optimální vyhlazovací matice pro jádrový odhad m(x), viz např. (Koláček a Horová 2017).

Simulace 100 opakování náhodných vzorků regresních modelů pro 6 regresních funkcí na [0, 1] 2. Náhodné chyby byly generovány jako i.i.d. ε i N(0; 0,2). Velikost vzorků byla n = 100. Při odhadech bylo použito ( Gaussovo ) jádro K(x 1, x 2 ) = 1 2π exp x2 1 2 x2 2 2. Pro každý odhad byla spočítána chyba, ISE = Dm(x, H) Dm(x) 2 dx a byly porovnány uvedené metody pro odhad optimální vyhlazovací matice.

x 1 m(x 1, x 2 ) = π cos(π(x 1 + x 2 )) + 1 IT metoda LEP median std IT 1,7581 0,2079 LEP 1,3809 0,2869 CV 1,8114 0,4300 CV 0.5 1.0 1.5 2.0 2.5

x 1 m(x 1, x 2 ) = 2 sin ( ) x 2 1 2 e 2 x 1 +x 2 1 sin ( e ) 2 x 1+x 2 1 IT metoda LEP median std IT 0,6970 0,0731 LEP 1,2879 0,2635 CV 1,7946 0,4246 CV 0.5 1.0 1.5 2.0 2.5

x 1 m(x 1, x 2 ) = 1 4 (2x 1 1)e (x1 1 2 ) 2 +(x 2 2 1 )2 4 IT metoda LEP median std IT -2,4857 0,6800 LEP 0,3348 0,4655 CV 0,9395 0,9234 CV 3 2 1 0 1 2

x 1 m(x 1, x 2 ) = 2(2x 1 3,5)(x 2 0,7)(x 2 0,5) IT metoda LEP median std IT 0,1579 0,1939 LEP 0,4393 0,3194 CV 1,0543 0,6578 CV 1 0 1

x 1 m(x 1, x 2 ) = 2x 1 1 IT metoda LEP median std IT -0,5847 0,2271 LEP -0,4134 0,3938 CV 0,2671 0,5668 CV 1.0 0.5 0.0 0.5

x 1 m(x 1, x 2 ) = e x 2 1 x 2 2 ( 4x 3 1 + 4x 1 6x 1 x 2 2 ) IT metoda LEP median std IT -0,6693 0,3020 LEP 0,7764 0,5005 CV 1,5045 0,6361 CV 1 0 1 2

Výhody a nevýhody navržené metody Poměrně rychlá a efektivní metoda pro odhad gradientu regresní funkce. Vhodná metoda např. při hledání lokálních extrémů. Kvalita odhadu závisí na počátečním odhadu regresní funkce m.

Literatura A. Goldenshluger, O. Lepski: Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality, The Annals of Statistics 39, 3, pp. 1608 1632, (2011). J. Koláček, I. Horová: Bandwidth matrix selectors for kernel regression, Computational Statistics 32, 3, pp. 1027 1046, (2017). M. Stone: Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society Series B Statistical Methodology 36, 2, pp. 111 147, (1974). M. P. Wand, M. C. Jones: Kernel Smoothing, London: Chapman & Hall, (1995).

Děkuji za pozornost.