Contents Basic Facts Atomic Magnetism

Similar documents
Magnetism in Condensed Matter

The Quantum Theory of Magnetism

Electron Correlation

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

The Oxford Solid State Basics

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

First-Principles Calculation of Exchange Interactions

WORLD SCIENTIFIC (2014)

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

The Mott Metal-Insulator Transition

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Preface Introduction to the electron liquid

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Contents. Acknowledgments

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Statistical Mechanics

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

The Physics of Ferromagnetism

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Interacting Spins. Chapter Weiss model of ferromagnetism

Solid state physics. Lecture 9: Magnetism. Prof. Dr. U. Pietsch

Magnetic ordering of local moments

Magnetism and Magnetic Switching

Magnetism at finite temperature: molecular field, phase transitions

Basic Magnetism (I. Fundamentals)

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

MOLECULAR SPECTROSCOPY

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

MSE 7025 Magnetic Materials (and Spintronics)

Magnetic Resonance Spectroscopy

Magnetism to Spintronics

CONTENTS. vii. CHAPTER 2 Operators 15

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

List of Comprehensive Exams Topics

Fundamentals and New Frontiers of Bose Einstein Condensation

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

An introduction to magnetism in three parts

Exchange interactions

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

The story of magnetism: from Heisenberg, Slater, and Stoner to Van Vleck, and the. issues of exchange and correlation

Many-Body Problems and Quantum Field Theory

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

2.1 Experimental and theoretical studies

Condensed matter theory Lecture notes and problem sets 2012/2013

Daniel D. Stancil Anil Prabhakar. Spin Waves. Theory and Applications

Investigation of electronic and magnetic structure of advanced magnetic materials

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

Principles of Magnetic Resonance

Practical Quantum Mechanics

Suggestions for Further Reading

Introduction to Heisenberg model. Javier Junquera

1 Magnetism. Maria Bałanda and Robert Pełka. 1.1 Origin of Magnetism

Introduction to magnetism

SOLID STATE PHYSICS ADRIANUS J. DEKKER DEPARTMENT OF ELECTRICAL ENGINEERING, UNIVERSITY OF GRONINGEN

Luigi Paolasini

Condensed Matter Option MAGNETISM Handout 1

METHODS IN THE QUANTUM THEORY OF MAGNETISM

Quantum Physics II (8.05) Fall 2002 Outline

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

عناوین 1- مواد فرومغناطیس

Luigi Paolasini

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse

Physics of Magnetism. Chapter references are to Essentials of Paleomagnetism, UC Press, 2010

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

J ij S i S j B i S i (1)

Magnetic ordering of nuclear spins in an interacting two-dimensional electron gas

Principles of Equilibrium Statistical Mechanics

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Lecture 24 - Magnetism

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

LECTURES ON QUANTUM MECHANICS

Lectures on Quantum Mechanics

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Condensed Matter Physics

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

From Materials to Models and Back. Dieter Vollhardt

Basics and magnetic materials I.1-1 K.-H. Müller

QUANTUM MECHANICS. Yehuda B. Band. and Yshai Avishai WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Phase transitions in the Ising model with random gap defects using the Monte Carlo method

Luigi Paolasini

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Role of Hund Coupling in Two-Orbital Systems

Chapter 8 Magnetic Resonance

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

MASTER OF SCIENCE IN PHYSICS

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2.

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

Single crystal growth and basic characterization of intermetallic compounds. Eundeok Mun Department of Physics Simon Fraser University

Magnetism I: from the atom to the solid state

Magnetic ordering, magnetic anisotropy and the mean-field theory

Transcription:

Contents 1 Basic Facts... 1 1.1 Macroscopic Maxwell Equations........ 1 1.2 Magnetic Moment and Magnetization.... 7 1.3 Susceptibility...... 13 1.4 Classification of Magnetic Materials..... 15 1.4.1 Diamagnetism.... 15 1.4.2 Paramagnetism.... 15 1.4.3 Collective Magnetism......... 17 1.5 Elements of Thermodynamics... 19 1.6 Problems... 22 2 Atomic Magnetism... 25 2.1 Hund s Rules...... 25 2.1.1 Russell Saunders (LS-)Coupling... 25 2.1.2 Hund s Rules for LS Coupling... 27 2.2 DiracEquation... 28 2.3 ElectronSpin... 34 2.4 Spin OrbitCoupling... 40 2.5 Wigner Eckart Theorem.... 45 2.5.1 Rotation... 45 2.5.2 RotationOperator... 47 2.5.3 Angular Momentum... 48 2.5.4 RotationMatrices... 50 2.5.5 TensorOperators... 52 2.5.6 Wigner Eckart Theorem....... 53 2.5.7 ExamplesofApplication... 55 2.6 Electron in an External Magnetic Field... 56 2.7 Nuclear Quadrupole Field... 62 2.8 Hyperfine Field.... 67 2.9 Magnetic Hamiltonian of the Atomic Electron........ 72 2.10 Many-ElectronSystems... 74 2.10.1 CoulombInteraction... 74 ix

x Contents 2.10.2 Spin OrbitCoupling... 75 2.10.3 FurtherCouplings... 76 2.11 Problems... 81 3 Diamagnetism... 85 3.1 Bohr van Leeuwen Theorem.... 85 3.2 Larmor Diamagnetism (Insulators)...... 87 3.3 The Sommerfeld Model of a Metal...... 90 3.3.1 Properties of the Model........ 91 3.3.2 Sommerfeld Expansion........ 99 3.4 Landau Diamagnetism (Metals).........104 3.4.1 Free Electrons in Magnetic Field (Landau Levels)...104 3.4.2 Grand Canonical Potential of the Conduction Electrons.. 109 3.4.3 Susceptibility of the Conduction Electrons...117 3.5 The de Haas Van Alphen Effect........ 121 3.5.1 Oscillations in the Magnetic Susceptibility.......... 121 3.5.2 Electron Orbits in Magnetic Field...124 3.5.3 Physical Origin of the Oscillations......... 128 3.5.4 Onsager Argument..... 131 3.6 Problems...134 References.... 136 4 Paramagnetism...137 4.1 Pauli Spin Paramagnetism...... 138 4.1.1 Primitive Theory of the Pauli Spin Paramagnetism.... 138 4.1.2 TemperatureCorrections...141 4.1.3 Exchange Corrections.........142 4.2 Paramagnetism of the Localized Electrons....155 4.2.1 WeakSpin OrbitInteraction...158 4.2.2 StrongSpin OrbitCoupling...164 4.2.3 Van Vleck Paramagnetism..... 166 4.3 Problems...171 References.... 174 5 Exchange Interaction...175 5.1 Phenomenological Theories..... 178 5.1.1 The Exchange Field...178 5.1.2 Weiss Ferromagnet....180 5.2 Direct Exchange Interaction..... 184 5.2.1 Pauli sprinciple...184 5.2.2 The Heitler London Method...188 5.2.3 Dirac s Vector Model..........195 5.3 Indirect Exchange Interaction....200 5.3.1 Rudermann Kittel Kasuya Yosida (RKKY) Interaction. 200 5.3.2 Superexchange.... 209

Contents xi 5.3.3 Double Exchange...... 217 5.4 Problems...226 References.... 231 6 Ising Model...233 6.1 The Model....234 6.2 The One Dimensional Ising Model......236 6.2.1 Spontaneous Magnetization.... 236 6.2.2 One Dimensional Ising Model in External Field.....240 6.3 The Phase Transition of Two-Dimensional Ising Model.......245 6.3.1 TheMethodofProof...245 6.3.2 Finite Ising Lattice with Special Boundary Conditions... 247 6.3.3 Probabilities...... 247 6.3.4 Realization Possibilities for the Polygons....249 6.3.5 Magnetization of the Finite Lattice......... 252 6.3.6 Thermodynamic Limit.........252 6.4 The Free Energy of the Two-Dimensional Ising Model........254 6.4.1 High-Temperature Expansion....... 255 6.4.2 Spin Products as Graphs....... 256 6.4.3 Loops.... 257 6.4.4 DirectedPaths...261 6.4.5 Matrix M 1...264 6.4.6 FreeEnergyperSpin...266 6.4.7 Curie Temperature T c...267 6.4.8 Specific Heat..... 268 6.4.9 Spontaneous Magnetization.... 269 6.5 Problems...270 References.... 271 7 Heisenberg Model...273 7.1 Model Hamiltonian........273 7.1.1 SpinOperators...273 7.1.2 Model Extensions..... 279 7.2 Exact Statements...283 7.2.1 Mermin Wagner Theorem..... 283 7.2.2 One-Magnon States of a Ferromagnet....... 291 7.3 Molecular Field Approximations........ 296 7.3.1 Ferromagnet......297 7.3.2 Antiferromagnet.......303 7.3.3 Ferrimagnet...... 317 7.4 SpinWaves...322 7.4.1 Linear Spin Wave Theory for the Isotropic Ferromagnet. 322 7.4.2 Renormalized Spin Waves....329 7.4.3 Harmonic Approximation for Antiferromagnets.....336 7.4.4 Harmonic Approximation for a Ferromagnet with Dipolar Interaction....345

xii Contents 7.5 Thermodynamics of S = 1/2 Ferromagnet.... 351 7.5.1 Tyablikov Decoupling.........351 7.5.2 Spontaneous Magnetization.... 354 7.5.3 Thermodynamic Potentials..... 359 7.6 Thermodynamics of S 1/2 Ferromagnets..........361 7.6.1 Green s Functions..... 361 7.6.2 Spontaneous Magnetization.... 363 7.6.3 TheCallenMethod...371 7.7 Problems...381 References.... 386 8 Hubbard Model...387 8.1 Introduction...387 8.2 Model for Band Magnets...388 8.2.1 SolidasaMany-BodySystem...388 8.2.2 Electrons in Narrow Energy Bands......... 389 8.2.3 Hubbard Model...393 8.3 Stoner Model......395 8.3.1 Stoner Ansatz (Ferromagnet)...395 8.3.2 Stoner Excitations..... 397 8.3.3 Magnetic Phase Transition..... 398 8.3.4 Static Susceptibility...405 8.4 Exact Statements and General Properties.....409 8.4.1 Mermin Wagner Theorem..... 410 8.4.2 TheInfinitelyNarrowBand...415 8.4.3 The Two-Site Model...420 8.4.4 The Exactly Half-Filled Band....... 427 8.4.5 Strong-Coupling Regime...... 431 8.4.6 Spectral Moments..... 437 8.4.7 High-Energy Expansions...... 439 8.4.8 Weak-Coupling Regime....... 441 8.4.9 InfiniteDimensions...444 8.4.10 Effective impurity -Problem...448 8.5 Magnetism and Electronic Correlations......451 8.5.1 Hubbard-I Approximation..... 451 8.5.2 InterpolationMethod...454 8.5.3 Correlation Effects and Ferromagnetism.....455 8.5.4 Criterion for Ferromagnetism....... 457 8.5.5 Static Susceptibility and Ferromagnetism....461 8.5.6 Spin-Dependent Band Shift....464 8.5.7 QuasiparticleDamping...470 8.5.8 Dynamical Mean Field Theory...... 475 8.5.9 Modified Perturbation Theory...... 479

Contents xiii 8.5.10 Curie Temperature, Magnetization and Static Susceptibility.........482 8.6 Problems...485 References.... 490 A Second Quantization...491 A.1 IdenticalParticles...492 A.2 Continuous Fock Representation........ 494 A.2.1 SymmetrizedMany-ParticleStates...494 A.2.2 ConstructionOperators...495 A.2.3 Many-BodyOperators...497 A.3 Discrete Fock Representation (Occupation Number Representation)... 501 A.3.1 SymmetrizedMany-ParticleStates...501 A.3.2 ConstructionOperators...503 A.4 Examples...506 A.4.1 BlochElectrons...506 A.4.2 Wannier Electrons..... 508 A.4.3 DensityOperator...509 A.4.4 CoulombInteraction...510 A.5 Problems...511 B The Method of Green s Functions...515 B.1 Linear Response Theory....515 B.1.1 KuboFormula...515 B.1.2 Magnetic Susceptibility........ 518 B.1.3 Dielectric Function....520 B.2 Spectroscopies and Spectral Densities....523 B.3 Double-Time Green s Functions........ 528 B.3.1 DefinitionsandEquationsofMotion...528 B.3.2 Spectral Representations....... 531 B.3.3 Spectral Theorem...... 534 B.3.4 Spectral Moments..... 536 B.3.5 Kramer s KronigRelations...537 B.3.6 SimpleApplications...539 B.4 The Quasiparticle Concept...... 545 B.4.1 InteractingElectrons...545 B.4.2 Electronic Self-energy.........548 B.4.3 Quasiparticles...551 B.4.4 QuasiparticleDensityofStates...555 B.4.5 Thermodynamics...... 558 B.5 Problems...559 C Solutions to Problems...563 Index...743

http://www.springer.com/978-3-540-85415-9