Dilaton: Saving Conformal Symmetry

Similar documents
8.821 String Theory Fall 2008

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Scale-invariance from spontaneously broken conformal invariance

Duality and Emergent Gravity in AdS/CFT

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Particle Notes. Ryan D. Reece

STA G. Conformal Field Theory in Momentum space. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre.

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

Stress-energy tensor is the most important object in a field theory and have been studied

Lecture: General Theory of Relativity

Quantum fields close to black hole horizons

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4)

Higgs Boson Phenomenology Lecture I

Renormalisation Group Flows in Four Dimensions and the a-theorem

General Relativity (225A) Fall 2013 Assignment 8 Solutions

Quantum Field Theory Notes. Ryan D. Reece

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

arxiv:hep-th/ v2 21 Feb 2002

PAPER 51 ADVANCED QUANTUM FIELD THEORY

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.323: Relativistic Quantum Field Theory I PROBLEM SET 2

Problem Set #1: 1.1, 1.3, 1.7, 1.10, 1.13 (Due Monday Sept. 23rd)

Special classical solutions: Solitons

Renormalization Group Flows

Lecture 6 The Super-Higgs Mechanism

Cosmic Strings and Topological Defects

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

Continuity Equations and the Energy-Momentum Tensor

New Loop-Regularization and Intrinsic Mass Scales in QFTs

Chapter 7 Curved Spacetime and General Covariance

Gravitation: Special Relativity

Quantum Field Theory III

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Theory of Elementary Particles homework VIII (June 04)

Scale-invariant alternatives to general relativity

Special Relativity. Chapter The geometry of space-time

Lecture A2. conformal field theory

Electroweak physics and the LHC an introduction to the Standard Model

Conformal Field Theory

=0 x i p j t + (pj v i )

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Donoghue, Golowich, Holstein Chapter 4, 6

Quantum Fields in Curved Spacetime

Coupled Dark Energy and Dark Matter from dilatation symmetry

A naturally light & bent dilaton

Properties of the boundary rg flow

Introduction to Renormalization Group

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Inverse square potential, scale anomaly, and complex extension

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

A Schrödinger approach to Newton-Cartan gravity. Miami 2015

NTNU Trondheim, Institutt for fysikk

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

PROBLEM SET 1 SOLUTIONS

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Chapter 2 General Relativity and Black Holes

Finite-temperature Field Theory

New Model of massive spin-2 particle

Lectures on Chiral Perturbation Theory

NTNU Trondheim, Institutt for fysikk

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

The Lorentz and Poincaré Groups in Relativistic Field Theory

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

Introduction to relativistic quantum mechanics

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Problem 1, Lorentz transformations of electric and magnetic

Hunting New Physics in the Higgs Sector

8.821 String Theory Fall 2008

Lecture: Lorentz Invariant Dynamics

Path Integrals in Quantum Field Theory C6, HT 2014

Time evolution of particle number asymmetry in an expanding universe

Scale and Conformal Invariance in d = 4

8.821 String Theory Fall 2008

About the counting of the Goldstone bosons

Chapter 3: Duality Toolbox

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

The l.h.s. of this equation is again a commutator of covariant derivatives, so we find. Deriving this once more we find

Relativistic Mechanics

arxiv: v3 [hep-th] 16 Dec 2008

The Lorentz and Poincaré groups. By Joel Oredsson

Exercise 1 Classical Bosonic String

Special Conformal Invariance

Critical Region of the QCD Phase Transition

A sky without qualities

ADVANCED QUANTUM FIELD THEORY

Lifshitz Hydrodynamics

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Symmetries, Groups Theory and Lie Algebras in Physics

RG Limit Cycles (Part I)

Workshop on Testing Fundamental Physics Principles Corfu, September 22-28, 2017.

Renormalization Group Study of the Chiral Phase Transition

Particle Physics 2018 Final Exam (Answers with Words Only)

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Finite Temperature Field Theory

Curved spacetime and general covariance

Transcription:

Dilaton: Saving Conformal Symmetry Alexander Monin Ecole Polytechnique Fédérale de Lausanne December 2, 2013 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 1 / 44

d 4 x ĝ( ˆΦ) 2 = d 4 x { g ( Φ) 2 + Φ 2 [ ( τ) 2 + 2 ]} τ, e τ 2 e τ = ( τ) 2 + 2 τ (1) [ a δ d n x ] g E 4 d 4 = a d n x g (E 4 + (d 4)σE 4 ), E 4 = R µνλσ R µνλσ 4Rµν R µν + R 2 (2) d 4 e iγ[j Φ,J X,gµν ] = (DδΦ) (DδX)e is[φ+δφ,x+δx,gµν ]+i gj Φ δφ+i gj X δx p 1 p 3 p 1 p 3 p 1 p 3 p 1 p 3 p 2 p 4 p 2 p 4 p 2 p 4 p 2 p 4 q 1 q 1 q 2 q 1 q 2 p 3 p 1 p 3 p 1 p 3 p 1 p 2 p 4 p 2 p 4 p 2 p 4 q 1 q 1 q 2 q 1 q 2 (a) (b) (c) (d) Γ[Φ, X, gµν ] = W [J Φ, J X, gµν ] d n x gφj Φ d n x gxj X, X (x ) = Ω X(x), ˆΦ (x ) = ˆΦ(x), [ a δ d n x ] g E 4 d 4 T µ µ = (4 d) λ 0 φ4 0 4! ĝ λσ (x) xλ x σ x µ x ν = ηµν e2τ(x) Ω 2 (x) X (x ) = Ω X(x) (3) = a d n x g (E 4 + (d 4)σE 4 ) L SB = e 2τ [( ˆΦ) 2 + ( τ) 2 m 2 ˆΦ 2 e 2τ ] d 4 2 = β(λ) [φ4 ], Tµν T λσ = # [ 1 d 1 4! 2 d p 2 2, (4) (P µλ P µλ + P µλ P µλ ) P µλ P µλ ] Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 2 / 44 (5)

Motivation Purely academic Anomalies and certain properties of QFT Dilaton as a spectator (background) field has already been used Naturalness? Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 3 / 44

Plan Symmetries and conservation laws Spontaneous symmetry breaking and coset construction Anomalies Conformal symmetry at the quantum level? Toy model up to 3 loops General argument Conclusions Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 4 / 44

Symmetries are ubiquitous lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 5 / 44

Are symmetries fundamental? Lepton number conservation LHHL Λ Symmetry breaking operator Purification by the RG flow Within the Wilsonian approach global symmetries can be understood as accidents lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 6 / 44

Symmetry conservation law Space-time translations µ T µν = 0 U(1)-phase rotation µ j µ = 0 Symmetries provide building blocks and selection rules A µ j µ, LHeR, V (H H), etc. lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 7 / 44

Conformal symmetry Group of transformations leaving Minkowski metric invariant up to an overall factor g µν(x) = Ω(x)η µν x µ = x µ + ξ µ µ ξ ν + ν ξ µ = 2 d η µν ξ Solution ξ µ = a µ + ω µν x }{{} ν Poincaré: P µ,m µν dilatation: D {}}{ αx µ + 2(bx)x µ b µ x 2. }{{} special conformal: K µ j µ = ξ ν T µ ν, µ j µ C = 0 T µ µ = 0 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 8 / 44

CFTs Commutation relations for SO(2, d) [J µν, J λσ ] = i (J µσ η νλ + J νλ η µσ J νσ η µλ J µλ η νσ ) Conformal group puts severe restrictions on correlators Poincaré + dilatations fix two point functions φ (x)φ (y) = Special conformal transformations x µ y µ = allow to fix 3-point functions. 1 x y 2 x µ y µ (1 2bx + b2 x 2 )(1 2by + b 2 y 2 ) Not about that! lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 9 / 44

Symmetry breaking Massive states exist! Phenomenological viability implies symmetry breaking Spontaneous symmetry breaking implies existence of Goldstone modes Promoting all dimensionful couplings to a dynamical field X realizes the scale symmetry nonlinearly m 2 Φ 2 λ ΦX Φ 2 X 2 It is enough to introduce only one additional degree of freedom the dilaton to realize nonlinearly the conformal symmetry lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 10 / 44

Nonlinear realization: coset construction Group H can be promoted to G by adding Goldstone modes π A for a given symmetry breaking pattern G H Action of the group G is realized non-linearly on the coset G/H Ω The form transforms not covariantly but not covariant derivatives Ω(π) = e iπa T A g : Ω(π ) = gω(π)h 1 (g, π) Ω 1 µ Ω = µ π A T }{{} A + ωµ a t }{{} a broken unbroken Ω 1 dω Ω 1 dω + h 1 dh 1 µ π A T A h ( µ π A T A ) h 1 Lagrangian is an arbitrary H-invariant function of π! Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 11 / 44

Space-time symmetries In this case The form Ω = e ixµ P µ }{{} e iπa T A unbroken Ω 1 µ Ω = eµ[ ν Pν + µ π A T }{{} A broken + ω a µ t a }{{} unbroken again provides building blocks: vierbein e ν µ, covariant derivative π It is rather usual that some derivatives can be put consistently to zero Certain modes are dependent: Inverse Higgs mechanism π A T A O = 0 ] Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 12 / 44

Example: Point particle in d = 1 + 1 Symmetry breaking pattern: boost and space translation are broken O(1, 1) R 1,1 R Ω = e i P 0t e ip1π e ikη Transformation properties under the boost g = e ika : gω = e ika e i P 0t+iP 1π(t) }{{ e ika } εi(η+a)k }{{} t =t cosh a+π(t) sinh a η (t )=η(t)+a π (t )=t sinh a+π(t) cosh a Ω 1 dω = i P 0 (cosh η π sinh η)dt + ip 1 ( sinh η + π cosh η) dt + i η Kdt }{{} can be set to zero Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 13 / 44

Example: Point particle in d = 1 + 1 Symmetry breaking pattern: boost and space translation are broken O(1, 1) R 1,1 R Ω = e i P 0t e ip1π e ikη Transformation properties under the boost g = e ika : gω = e ika e i P 0t+iP 1π(t) }{{ e ika } εi(η+a)k }{{} t =t cosh a+π(t) sinh a η (t )=η(t)+a π (t )=t sinh a+π(t) cosh a Ω 1 dω = i P 0 (cosh η π sinh η)dt + ip 1 ( sinh η + π cosh η) dt + i η Kdt }{{} tanh η= π Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 14 / 44

Example: Point particle in d = 1 + 1 Symmetry breaking pattern: boost and space translation are broken O(1, 1) R 1,1 R Ω = e i P 0t e ip1π e ikη Transformation properties under the boost g = e ika : gω = e ika e i P 0t+iP 1π(t) }{{ e ika } εi(η+a)k }{{} t =t cosh a+π(t) sinh a η (t )=η(t)+a π (t )=t sinh a+π(t) cosh a Ω 1 dω = i P 0 (cosh η π sinh η)dt + ip 1 ( sinh η + π cosh η) dt + i η Kdt }{{}}{{} tanh η= π π Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 15 / 44

Example: Point particle in d = 1 + 1 Symmetry breaking pattern: boost and space translation are broken O(1, 1) R 1,1 R Ω = e i P 0t e ip1π e ikη Transformation properties under the boost g = e ika : gω = e ika e i P 0t+iP 1π(t) }{{ e ika } εi(η+a)k }{{} t =t cosh a+π(t) sinh a η (t )=η(t)+a π (t )=t sinh a+π(t) cosh a Ω 1 dω = i P 0 (cosh η π sinh η) dt + ip 1 ( sinh η + π cosh η) dt + i η Kdt }{{}}{{}}{{} tanh η= π π i 1 π 2 dt Lagrangian for a relativistic point-like particle! lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 16 / 44

Nonlinear realization: conformal symmetry For each spontaneously broken symmetry there is a dynamical field Dilaton from the coset construction An element of the coset is parametrized in a standard way The fundamental form Ω 1 dω = idx µ P µ }{{} e τ vierbein Ω = e i P µx µ e ikµcµ (x) e idτ(x) +D ( µ τ 2c µ ) }{{} µτ +K ν ( µ c ν + 2c µ c ν δµc ν 2 )... }{{} µc ν Covariant derivative µ τ can be consistently put to zero 2c µ = µ τ τ = 2c µ x µ, c µ = const : [τ(x)d + c µ (x)k µ ] O = 0 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 17 / 44

Free massive scalar field in d = 4: Example L = 1 2 ( ˆΦ) 2 1 2 m2 ˆΦ2 Vierbein: e τ and 2c µ c ν δ ν µc 2 ( τ) 2 As a result the Lagrangian for the non-linear realization has the form L SB = e 2τ 2 [( ˆΦ) 2 + ( τ) 2 m 2 ˆΦ2 e 2τ ] X = ve τ, ˆΦ = Φe τ L SB = 1 2 ( Φ)2 Φ X µφ µ X + 1 ( ) 2 ( Φ)2 1 + Φ2 X 2 m2 2v 2 X2 Φ 2 One degree of freedom is enough! lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 18 / 44

Alternative way to introduce the dilaton A theory with the action S[ˆΦ] is coupled to a background metric ĝ µν S[ˆΦ, ĝ µν ] Dilaton appears as a conformal mode of the metric ĝ µν = e 2τ g µν, ˆΦ = e τ Φ S SB [Φ, τ] = S[ˆΦ, ĝ µν ], g µν = η µν Obviously the Lagrangian for Φ and τ is invariant under Φ Φe σ, g µν e 2σ g µν, τ τ σ ˆΦ ˆΦ, ĝ µν ĝ µν lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 19 / 44

Example Free massive scalar field in d = 4 L = 1 2 ( ˆΦ) 2 1 2 m2 ˆΦ2 S[ˆΦ, ĝ µν ] = 1 2 d 4 x ] ĝ [( ˆΦ) 2 m 2 ˆΦ2 + v2 6 ˆR Introducing X = ve τ L SB = 1 2 ( Φ)2 Φ X µφ µ X + 1 ( ) 2 ( Φ)2 1 + Φ2 m2 X 2 2v 2 X2 Φ 2 The metric for the σ-model is flat conformal invariance is manifest lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 20 / 44

From classical to quantum Anomalies Sometimes regularization breaks a symmetry µ j µ 0 Examples Chiral anomaly Pauli-Villars breaks e iαγ 5 explicitly Dim-reg breaks chiral symmetry due to specific definition of γ5 Trace anomaly. Regularizations introduce scale explicitly Dim-reg: couplings are dimensionful in d 4 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 21 / 44

Trace anomaly Classical improved energy momentum tensor for λφ 4 is traceless T µν = µ φ ν φ η µν L ξ( µ ν η µν 2 )φ 2 At the quantum level dimensionally regularized trace is Coupling T µ µ = (4 d) λ 0φ 4 0 4! After renormalization Operator T µ µ = (4 d) 4! φ 4 4! ( λ + β(λ) ) ( 1 2β(λ) 4 d (4 d)λ }{{} λ 0 ) [φ 4 ] } {{ } φ 4 0 = β(λ) [φ4 ] 4! Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 22 / 44

Conformal symmetry at the quantum level Regularization is a source of an explicit symmetry breaking Introduce regularization consistent with the symmetry Non-linear realization gives a hint how to introduce appropriate regularization: All the scales are dilaton related! Example, dim-reg φ 4 theory ( φ) 2 + v 2 e 2τ ( τ) 2 λφ 4 }{{} Classical d=4 ( φ) 2 + v 2 e 2τ ( τ) 2 λv # e (4 d)τ φ 4 }{{} Dim-reg d 4 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 23 / 44

Another source of anomaly Regularization is not the end of the story Counter terms might break the symmetry! Example: Weyl anomaly d = 4: Regularized generating functional W [g µν ] is Weyl invariant e iw [gµν] = Dφe i 2 d 2 d ( φ)2 +ξφ 2R, ξ= 1 4 d 1 The counter term with E 4 = R µνλσ R µνλσ 4R µν R µν + R 2 is not [ a δ d n x ] g µν e g E 2σ g µν 4 = a d n x g σe 4 d 4 One has to make sure that counterterms respect the symmetry! lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 24 / 44

Example: 1 loop Dimensionally regularized d = 4 2ε Lagrangian can be expanded around X = v + χ µ 2ε L 0 = 1 2 ( φ)2 + 1 2 ( X)2 λ 4! φ4 X 2α, α= 4 d d 2 {}}{ φ 4 X 2α = φ 4 v [1 2α + }{{} 2ε (1 ln + χ ) ( ( + 2ε 2 v }{{} ln 1 + χ ) ( + ln 2 1 + χ )) + O ( ε 3)] v v Not important at one loop two loops Leading divergence is 1/ε #loops Renormalization Scale/conformally invariant 1-loop counter term 3 λ 2 v 2α φ 4 16π 2 2ε 4! = λ2 3 φ 4 (4π) 2 2ε 4! X2α + finite Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 25 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 26 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 27 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 28 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 29 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 30 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε Divergent ε 1 Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 31 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε Finite! Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 32 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 ε ε Finite! Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 33 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 Standard renormalization of φ 4 λ2 1 (4π) 4 24ε ( φ)2 Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 34 / 44

Example: 2 loops Diagrams to be taken into account ε 2 ε 2 ε 1 }{{} Standard renormalization of φ 4 [ ] λ2 1 λ3 3 3 2ε φ 4 (4π) 4 4 ε 2 4! X2α (4π) 4 24ε ( φ)2 [ ] λ3 3 3 2ε φ 4 [ ( (4π) 4 4 ε 2 4! v2α 1 + 4ε ln 1 + χ )] + finite v }{{} φ 4 renormalization Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 35 / 44

Example: 3 loops Graphs from φ 4 { ε 3 Divergent graphs { New graphs Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 36 / 44

Example: 3 loops Power of divergence = }{{} ε 3 # of vertices with χ ε Divergence of a graph At most 2 vertices!! New structures appear due to the dilaton in the loop! C 6 = L CT = C 6 6! φ 6 X 2 X2α C 8 8! λ4 (4π) 6 1801 ε, C 8 = λ4 φ 8 X 4 X2α 9625 (4π) 6 6 1 ε lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 37 / 44

6d example L = 1 2 ( φ)2 + 1 2 ( X)2 g φ 4 X 2α6, 4! }{{} X Leads to ε unsuppressed vertices 2α 6= (6 d) (d 2) I II III L CT = 1 (2!) 2 C 1 6 d C 1 = Counterterms are conformally invariant! φ 2 φ2 2 X X + 1 C 2 (3!) 2 6 d φ 3 φ3 2 X2 X 2 + 1 C 3 (4!) 2 6 d φ 4 φ4 2 X3 X 3 g 2 12(4π) 3 C 2 = g2 6(4π) 3 C 3 = g2 3(4π) 3 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 38 / 44

8d example Classically conformal invariant Lagrangian has the form One of the counter terms L = 1 2 ( φ) + 1 2 ( X)2 g 3! φ 3 X# X1/3 δ 2 3 = g3 1 1 8 d 6(4π) 4 3! { φ 2 X 2/3 2 (φx 1/3 ) }{{} φx 1/3 [ (φx 1/3 ) ] 2 } Only for relative minus the expression is conformally invariant Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 39 / 44

General argument 1PI effective action Γ reg [Φ] is a Legendre transform of W reg [J Φ ] e iwreg[jφ] = DΦ e is[φ]+i J Φ Φ reg If a regulator is consistent with a symmetry δγ reg [Φ] = 1 ε δγ P [Φ] + δγ F [Φ] = 0 For internal symmetries δ does not depend on the # of dimensions δγ P [Φ] = δγ F [Φ] = 0 Example: Weyl symmetry Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 40 / 44

General argument Conformal transformations depend explicitly on d! Regularized effective action with metric Γ[Φ, X, g µν ] is Weyl invariant: ˆΦ(x) = e τ(x) Φ(x), ĝ µν (x) = e 2τ(x) g µν (x), ˆX = v Γ[Φ, X, g µν ] = Γ[ˆΦ, v, ĝ µν ] = 1 ε Γ P [ˆΦ, v, ĝ µν ] + Γ F [ˆΦ, v, ĝ µν ] Assuming no Diff anomaly Γ P [ˆΦ (x ), v, ĝ }{{} µν(x ) }{{} ] = Γ P [ˆΦ, v, ĝ µν ] ˆΦ(x) ĝ λσ (x) xλ x x σ µ x ν Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 41 / 44

Conformal symmetry For the flat metric ĝ µν (x) = η µν e 2τ(x) conformal transformations lead to x µ = Ω 1 (x) (x µ a µ x 2 ) }{{} 1 2(ax)+a 2 x 2 ĝ µν(x ) = η µν e 2τ(x) Ω 2 (x) It can be written as transformation of Φ and X keeping g µν = η µν fixed e 2τ (x ) η µν ĝ µν(x ) = η µν e 2τ(x) Ω 2 (x) Diff { e τ (x ) Φ (x ) ˆΦ }} (x ) = }{{} ˆΦ(x) { Weyl Φ(x)e τ(x) As a result we get the standard conformal transformations! Φ (x ) = Ω Φ(x) e 2τ (x ) = e 2τ(x) Ω 2 (x) Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 42 / 44

Conclusions Non-linearly realized conformal symmetry can be promoted to the quantum level Dilaton is a source for all scales in the theory Relevance for naturalness? Unitarity? Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 43 / 44

Thank you very much Alexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry December 5, 2013 44 / 44