j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

Similar documents
λ(t)f c (t s, s) ds, 0 t < c,

A central-limit-theorem version of the periodic Little s law

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

Supplementary Information

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009

Chp 4. Expectation and Variance

necessita d'interrogare il cielo

LOWELL WEEKLY JOURNAL


W I T H M i A. L I O E T O W A R D ISTOlNrE ^ I S T D C H A. n i T Y F O R - A L L. "

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

W I T H M A L I C E T O W A R D N O N E A N D C H A R I T Y F O R A L L. " A LOWELL MM. Sent to Jackson for 30 Years for Attempt

THE I Establiifrad June, 1893

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

Tornado, Squalls Strike Kinston Area

THE GRACE MESSENGER

LOWELL JOURNAL. DEBS IS DOOMED. Presldrtit Cleveland Write* to the New York Democratic Rilltors. friends were present at the banquet of

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim

Daily Register Q7 w r\ i i n i i /"\ HTT /"\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\

Procedure for Measuring Swing Bearing Movement on 300 A Series Hydraulic Excavators {7063}

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted.

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

The Lanczos and conjugate gradient algorithms

"INDEPENDENT IN AI.L THINOS. NEUTRAI. IN NOTHINO' LOWELL, MICHIGAN, JAM AHV, 19, WHOLE NO. 290.

c 2002 Society for Industrial and Applied Mathematics

z 0 > 0 z = 0 h; (x, 0)

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.


Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

Monday, July First, And continues until further notice.

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

MIS S BALLS, L.L.A.]

the convolution of f and g) given by

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

U a C o & I & I b t - - -, _...

CHAPTER 5. Basic Iterative Methods

LOWELL JOURNAL CRESP0 REIGNS. MICE DESTROY #10,000 CASH. T O W E L L S T A T E B A N K,

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

LOWELL WEEKLY JOURNAL.

Str«S A N F R A N C I S C O, C A L., S A T U R D A Y, M A Y i

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the

This is the author s version of a work that was submitted/accepted for publication in the following source:

Supplementary Materials: Martingale difference correlation and its use in high dimensional variable screening by Xiaofeng Shao and Jingsi Zhang

Probability and combinatorics

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

LOWELL JOURNAL. LOWSLL, MICK., WSSDNaSDAY", FEB 1% 1894:

Brownian Motion and Conditional Probability

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

GUJARAT STHAPNA DIVAS. inside. 1ST May 2016 was the 56th Gujarat. p13. combo package teacher. Warm Welcome to Summer Vacation

Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes

Gaussian Random Field: simulation and quantification of the error

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics. Wen-Xin Zhou

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

On the Value Function of a Mixed Integer Linear Program

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

A complete criterion for convex-gaussian states detection

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

Conditional distributions. Conditional expectation and conditional variance with respect to a variable.

5 Operations on Multiple Random Variables

Long-range dependence

Atlantic County Properties

Confidence regions for stochastic variational inequalities

A Cluster-based Approach for Biological Hypothesis Testing and its Application

Convex Geometry. Carsten Schütt

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School

Chapter 4 : Expectation and Moments

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives,

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

THE LOWELL LEDGER. INDEPENDENT-NOT NEUTRAL.

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

SOME PROPERTIES OF CONTINUED FRACTIONS. /as, as,...i

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Gaussian vectors and central limit theorem

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT

On Expected Gaussian Random Determinants

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

Lecture 3 - Expectation, inequalities and laws of large numbers

ELEC2400 Signals & Systems

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

HOMEPAGE. The. Inside. Beating the MARCH New Faces & Anniversaries. Spring Recipes. Beating the Winter Blues. ADP Rollout

FINITE DIFFERENCE SCHEMES WHITH EXACT SPECTRUM FOR SOLVING DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS OF THE FIRST KIND

Transforms. Convergence of probability generating functions. Convergence of characteristic functions functions

Section 9.1. Expected Values of Sums

T h e C S E T I P r o j e c t

A subspace of l 2 (X) without the approximation property

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x)

Lecture 14: Multivariate mgf s and chf s

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION

Temperature Controller E5CB (48 48 mm)

Recall that the Fourier transform (also known as characteristic function) of a random variable always exists, given by. e itx f(x)dx.

A Central Limit Theorem for the Sum of Generalized Linear and Quadratic Forms. by R. L. Eubank and Suojin Wang Texas A&M University

Semester University of Sheffield. School of Mathematics and Statistics

Transcription:

L = λw L = λw L λ W 25

l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1 n Ȳ k,j (n) 1 n n A k+(m 1)d, m=1 n Q k+(m 1)d = 1 n m=1 n m=1 n Y k+(m 1)d,j, j 0, m=1 k+(m 1)d Y k+(m 1)d j,j F k,j(n) c Ȳk,j(n) n λ k (n) = m=1 Y k+(m 1)d,j n m=1 A, j 0, k+(m 1)d W k (n) F k,j(n), c 0 k d 1. λ k (n) k (m 1)d + k 0 k d 1 m 1 Qk (n) k,

Ȳk,j(n) k j F c k,j (n) k j n Wk (n) k n n n [k] k mod d k d ( ) (A1) λk (n) λ k, n, 0 k d 1, c (A2) F k,j (n) Fk,j, c n, 0 k d 1, j 0, (A3) Wk (n) W k Fk,j c n, 0 k d 1, k Z [k] k mod d λ k = λ [k], F c k,j = F c [k],j, j 0, W k = W [k], 0 k d 1 ( Q k (n), L k (n)) (L k, L k ) n, L k λ k j Fk j,j c < L k (n) = k λ k j (n) F k j,j(n) c + m=1 j=1 d λ d j (n) F d j,(m 1)d+j+k c (n) λ [k j] F c [k j],j, n 1, λ k (n) F k,j c (n) W k (n) F k,j c (n) d k Q k (n) L k (n)) L k L k

R d d R x = (x 0, x 1, ) l 1 R R l R R l 1 {x = (x 0, x 1, ) R : x 1 x i < }, i=0 l {x = (x 0, x 1, ) R : x sup x i < } i l 1 l 1 l 1 l l 1 l (l 1 ) d l 1 y (y 0, y 1,, y d 1 ) (l 1 ) d y i (y i,0, y i,1, ) l 1 y 1,d = max i=0,,d 1 { y i 1 } 0 k d 1 F c k(n) ( F c k,0(n), F c k,1(n), F c k,2(n), ) l 1, F c k (F c k,0, F c k,1, F c k,2, ) R. λ λ λ(n) ( λ0 (n), λ 1 (n),, λ d 1 (n)) R d, F c (n) ( F 0 c (n), F 1 c (n),, F d 1(n)) c (l 1 ) d, W W W (n) ( W 0 (n), W 1 (n),, W d 1 (n)) R d, Q Q Q(n) ( Q 0 (n), Q 1 (n),, Q d 1 (n)) R d, L L L(n) ( L 0 (n), L 1 (n),, L d 1 (n)) R d, R R R(n) L L L(n) Q Q Q(n) R d, ˆλˆλˆλ(n) n( λ λ λ(n) λ) R d, ˆF c (n) n( F c (n) F c ) (R ) d, ŴŴŴ (n) n( W W W (n) W ) R d, ˆQˆQˆQ(n) n( Q Q Q(n) L) R d, ˆLˆLˆL(n) n( L L L(n) L) R d, ˆRˆRˆR(n) ˆLˆLˆL(n) ˆQˆQˆQ(n) R d, λ (λ 0, λ 1,, λ d 1 ) R d, F c (F0 c, F1 c,, Fd 1) c (R ) d, W (W 0, W 1,, W d 1 ) R d, L (L 0, L 1,, L d 1 ) R d,

πk 1 : Rd R k = 0, 1,, d 1 R d (k + 1) πj 2 : l 1 R j 0 l 1 (j + 1) πk 1(λ) = λ k πj 2( F k c(n)) = F k,j c (n) k = 0, 1,, d 1 Π 1 k : Rd l Π 2 k : (l 1) d l 1 Π 1 k(x) (π 1 k(x), π 1 k 1(x),, π 1 0(x), π 1 d 1(x), π 1 d 2(x),, π 1 0(x), π 1 d 1(x), π 1 d 2(x), ) = (x k, x k 1,, x 0, x d 1, x d 2,, x 0, x d 1, x d 2, ), Π 2 k(y) (π 2 0 π 1 k(y), π 2 1 π 1 k 1(y),, π 2 k π 1 0(y), π 2 k+1 π 1 d 1(y), π 2 k+1 π 1 d 2(y), ) = (y k,0, y k 1,1,, y 0,k, y d 1,k+1, y d 2,k+2,, y 0,k+d, y d 1,k+d+1, y d 2,k+d+2, ). Π 1 k ( ) Π 2 k ( ) Π 1 k(x) Π 2 k(y) = x [k j] y [k j],j, Π 1 k ( ) Π 2 k ( ) : l l 1 R z (l 1 ) d f z : R d R d (l 1 ) d R d g : (l 1 ) d R d f z (x (1), x (2), y) (f z,0 (x (1), x (2), y), f z,1 (x (1), x (2), y),, f z,d 1 (x (1), x (2), y)), g(y) ( y 0,j, y 1,j,, y d 1,j ), f z,k : R d R d (l 1 ) d R f z,k (x (1), x (2), y) Π 1 k(x (1) ) Π 2 k(y) + Π 1 k(x (2) ) Π 2 k(z), 0 k d 1. f z (x (1), x (2), y) g(y) f g y (R ) d g 0 (y 0 ) y 0,j R R y (i) 0,j I {i=j} i, j 0 y (i) 0 (y (i) 0,0, y(i) 0,1, ) 0 i R y (i) 0 0 i lim g 0(y (i) 0 ) = 1 0 = g 0(0) i 0 R d 0 k = 0 k ( ) (C1) (ˆλˆλˆλ(n), ˆF c (n)) (Λ, Γ ) R d (l 1 ) d n, (C2) ˆRˆRˆR(n) 0 n, (C3) W = g(f F c ) L = f F c (0, λ, 0).

(C1) (C2) ˆF c (n) (l 1 ) d Γ (l 1 ) d (C3) f z g ( ( λ λ λ(n), F c (n), Q Q Q(n), ) L L L(n), W W W (n), (ˆλˆλˆλ(n), ˆF c (n), ˆQˆQˆQ(n), ˆLˆLˆL(n), ŴŴŴ (n), ˆRˆRˆR(n) )) (( λ,f F c, L, L, W ), ( Λ, Γ, Υ, Υ, Ω, 0 )) (R d (l 1 ) d R 3d ) (R d (l 1 ) d R 4d ), Ω = g(γ ) Υ = f F c (λ, Λ, Γ ) Ω k = Γ k,j Υ k = λ [k j] Γ [k j],j + Λ [k j] F c [k j],j k 0. (l 1 ) d (C1) ˆF c (n) Γ (l 1 ) d l 1 B B (l 1 ) d (l 1 ) d l 1 l 1 l 1 l 1 l 1 (l 1 ) d 1,d (l 1 ) = l (l 1 ) d (l ) d (l 1 ) d U (n) (U (n) 0,..., U (n) d 1 ) (l 1) d U (n) k (U (n) k,j : j 0) l 1 U {U (n) } U h(u (n) ) h(u) h ((l 1 ) d ) = (l ) d {U (n) } ϵ > 0 K (l 1 ) d P (U (n) K) 1 ϵ n (l 1 ) d n 1 O n {(y (R ) d : y k,j = 0, 0 k d 1, j n 1}, O = n=1o n (l ) d O (l ) d (l ) d y (l ) d {y (i) } O y { y (i) k,j = y k,j, j < i, 0,, 0 k d 1 i 1 y (i) O y ((l ) d ) = (l,s ) d l,s {x = (x 0, x 1, ) R : i=0 x i < } x ((l ) d ) = (l,s ) d x(y (i) ) = d 1 k=0 d 1 x k,j y (i) k,j = i 1 k=0 x k,j y k,j d 1 k=0 x k,j y k,j = x(y) i, y (i) y O (l ) d

(l 1 ) d ( (l 1 ) d ) K (l 1 ) d K ϵ > 0 J ϵ y K d 1 k=0 j=j ϵ y k,j < ϵ K (l 1 ) d K ϵ > 0 {y (i) } N K K N ϵ J ϵ d 1 k=0 j=j ϵ y (i) k,j < ϵ y(i) K y K y (i) y y (i) 1,d < ϵ d 1 d 1 y k,j y k,j y (i) k,j + d 1 y (i) k,j d 1 y k,j y (i) k,j + d 1 y (i) k,j k=0 j=j ϵ k=0 j=j ϵ k=0 j=j ϵ k=0 k=0 j=j ϵ d 1 d y y (i) 1,d + dϵ + ϵ. k=0 j=j ϵ y (i) k,j K (l 1 ) d ϵ > 0 J ϵ y K d 1 k=0 j=j ϵ y k,j < ϵ (l 1 ) d K K K C/d y 1,d C y K ϵ > 0 J ϵ K 0 {x (R Jϵ ) d : x 1 C} {x (i) } N ) d ϵ K (RJϵ 0 {y (i) } N (l 1) d {x (i) } N ) d (l (RJϵ 1 ) d y (i) k,j = x(i) k,j j J ϵ 0 y K x y (R Jϵ ) d x 1 d y 1,d C x K 0 x (i) x x (i) 1 ϵ d 1 y y (i) 1,d J ϵ 1 k=0 ϵ + ϵ, d 1 y k,j y (i) k,j + k=0 j=j ϵ y k,j y (i) k,j x d 1 x(i) 1 + y k,j j=j ϵ K ϵ (l 1 ) d {y (i) } N K (l 1 ) d m, C > 0 d 1 K m,c {x (l 1 ) d : x 1,d C, k=0 j=m n y k,j < n 1 k=0 n 1} ( (l 1 ) d ) U (n) U (l 1 ) d ( ) ϵ > 0 m C K m,c ( ) J 0 J < P (U (n) K m,c ) > 1 ϵ (U (n) (n) k,j : 0 k d 1; 0 j J) (U k,j : 0 k d 1; 0 j J) RdJ. (ii) ( ) J 0 J < {a k,j : 1 k d 1, 0 j J} d 1 J k=0 J=0 d 1 a k,j U (n) k,j k=0 J a k,j U k,j.

{U (n) } y(u (n) ) y(u) y O ((l 1 ) d ) U (n) U (l 1 ) d l 1 l 1 B q C q x i B ( x i q ) 1/q C q ϵ i x i, i i {ϵ i } P (ϵ i = 1) = P (ϵ i = 1) = 1/2 l 1 2 U B h B h(x) U B Eh(U) = 0 Eh 2 (U) < h B B U = (U 0, U 1, ) l 1 (E U k 2 ) 1/2 < ; k=0 U U n 1/2 n U (i) U (i) U U B h(u) h B l 1 U = (U 0, U 1, ) l 1 U U Y Fj c P (Y j) k = 0, 1, Y F j 1 Fj c Y (i) Y U (i) j I {Y (i) j} F c j. U (i) l 1 U Eh(U) = 0 h l h (l 1 ) U (E(I {Y (1) j} Fj c ) 2 ) 1/2 = (F j Fj c ) 1/2 <. k=0 k=0 F c j O(j (2+ϵ) ) ϵ > 0. Eh(U) = 0 Eh 2 (U) < h l U

(ˆλˆλˆλ(n), ˆF c (n)) (Λ, Γ ) C1 C2 (C1) R d (R J ) d J (C1) (C3) C2 (Λ, Γ ) (Λ, Λ) = Σ Λ (π 1 k (Γ ), π1 l (Γ )) = (Γ k, Γ l ) = Σ Γ :k,l (Λ, π 1 k (Γ )) = (Λ, Γ k ) = Σ Λ,Γ :k 1 k, l d 1 (Ω, Υ ) (Ω, Ω) k,l = (Υ, Υ ) k,l = (Ω, Υ ) k,l = j=1 i=0 + Σ Γ :k,l i,j, λ [k i] λ [l j] Σ Γ :[k i],[l j] i+1,j+1 + F[k i],i c λ Λ,Γ :[l j] [l j]σ i=0 λ [l j] Σ Γ :k,[l j] i,j+1 + i=0 [k i]+1,j+1 + i=0 λ [k i] F[l j],j c :[k j] ΣΛ,Γ [l j]+1,i+1 F[l j],j c :k ΣΛ,Γ [l j]+1,i, F c [k i],i F c [l j],j ΣΛ [k i]+1,[l j]+1, [x] x mod d ( ) L L L(n) Q Q Q(n) ˆLˆLˆL(n) ˆQˆQˆQ(n) Υ k Λ Γ Υ k k m = 1, 2, A m = (A 0+(m 1)d, A 1+(m 1)d,, A d 1+(m 1)d ) R d. {A m } m = 1, 2, EA m = λ > 0 (A m ) = Σ Λ k Fk,j c O(j (3+δ) ) k δ > 0

(Λ, Γ ) R d (l 1 ) d Λ N(0, Σ Λ ) (Γ k,j, Γ k,s ) = λ k F k,j Fk,s c 0 k d 1 0 j s Λ, Γ 0, Γ 1,, Γ d 1 (Ω, Υ ) 1 k l d 1 (Ω, Ω) k,l = (Υ, Υ ) k,l = (Ω, Υ ) k,l = { λk i=0 F k,min{i,j}fk,max{i,j} c, k = l, 0, k l, k λ 3 s( s=0 + + l s=k+1 d 1 s=l+1 m=0 n=0 λ 3 s( λ 3 s( F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) m=1 n=0 m=1 n=1 d 1 d 1 + c k,i c k,j Σi,j, Λ i=0 m=0 c k,j = F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) λ 2 kf k,min{i,l k+md} Fk,max{i,l k+md} c. { m=0 F c j,k j+md 0 j k, m=1 F c j,k j+md k + 1 j d 1. ( (I3)) (I3) 3 + δ (I3) 2 + δ (Ω, Υ ) N m, n Nd i, j Nd d = 1 d = 1 Υ = f F c (λ, Λ, Γ ) = λω + W Λ Λ Λ = λ 3/2 Ũ Ω Ñ( t) t 1/2 k=1 ( W k w) = t Ñ( t) Ñ( t) Ñ( t) t 1/2 ( k=1 = t Ñ( t) Ñ( t) t 1/2 ( k=1 = t Ñ( t) ( t 1/2 ( Ñ( t) k=1 W k Ñ( t) w) W k λ t w + λ t w Ñ( t) w) W k λ t w) t 1/2 w(ñ( t) λ t) ) λ 1 ( λ 1/2 ( W wũ) + w λ 3/2 Ũ) = Ω,

λ 1/2 W = λω + λ 1/2 wũ w λ 3/2 Ũ Υ ˆQˆQˆQ(n) Υ ˆLˆLˆL(n) λ 1/2 ( W wũ) = λω + λ 1/2 wũ w λ 3/2 Ũ λ 1/2 wũ = λω w λ 3/2 Ũ = λω + wλ. λ w λ W d = 1 t 1/2( Ñ( t) Ñ( t) λ t, k=1 W k Ñ( t) w ) (Λ, Ω), C3 C3 ˆLˆLˆL(n) ˆQˆQˆQ(n) f z (x (1), x (2), y) R d R d (l 1 ) d R d f z,k (x (1), x (2), y) R d R d (l 1 ) d R x (i) = (x (i) 0, x(i) 1,, x(i) d 1 ) Rd i = 1, 2 y = (y 0, y 1,, y d 1 ) (l 1 ) d z = (z 0, z 1,, z d 1 ) (l 1 ) d R d x max x k x = (x 0, x 1,, x d 1 ) R d 0 k d 1 R d l Π 1 k Π2 k Π1 k (x) = x < Π 2 k (y) 1 d 1 k=0 y k 1 < Π 1 k (x) l Π 2 k (y) l 1 Π 1 k (x) Π1 k ( x x x) = Π1 k (x x x x) Π k 2(y) Π2 k (ỹỹỹ) = Π2 k (y ỹỹỹ) x, x x x R d y,ỹỹỹ (l 1 ) d (x (1), x (2), y) ( x x x (1), x x x (2),ỹỹỹ) (x (1), x (2), y) ( x x x (1), x x x (2),ỹỹỹ) R d R d (l = d 1 1) d x(1) x x x (1) + x (2) x x x (2) + y k ỹỹỹ k 1 < δ, k=0

f z,k (x (1), x (2), y) f z,k ( x x x (1), x x x (2),ỹỹỹ) = Π 1 k(x (1) ) Π 2 k(y) + Π 1 k(x (2) ) Π 2 k(z) Π 1 k( x x x (1) ) Π 2 k(ỹỹỹ) Π 1 k( x x x (2) ) Π 2 k(z) Π 1 k(x (1) ) Π 2 k(y) Π 1 k( x x x (1) ) Π 2 k(ỹỹỹ) + (Π 1 k(x (2) x x x (2) )) Π 2 k(z) Π 1 k(x (1) ) (Π 2 k(y ỹỹỹ) + (Π 1 k(x (1) x x x (1) )) (Π 2 k(y ỹỹỹ)) + (Π 1 k(x (1) x x x (1) )) Π 2 k(y) + (Π 1 k(x (2) x x x (2) )) Π 2 k(z) Π 1 k(x (1) ) Π 2 k(y ỹỹỹ 1 + Π 1 k(x (1) x x x (1) ) Π 2 k(y ỹỹỹ) 1 + Π 1 k(x (1) x (1) ) Π 2 k(y) 1 + Π 1 k(x (2) x x x (2) ) Π 2 k(z) 1 d 1 d 1 x (1) δ + δ 2 + δ y k 1 + δ z k 1 0 δ 0, d=0 d=0 f z,k f z g(y) = f 0 (e, 0, y) e = (1, 1,, 1) R d g ˆF c (n) (l 1 ) d F c (l 1 ) d ( λ λ λ(n), F c (n)) (λ,f F c ) R d (l 1 ) d. W W W (n) = g( F c (n)) W = g(f F c ) ( λ λ λ(n), W W W (n), F c (n)) (λ, W,F F c ) R 2d (l 1 ) d. L L L(n) L L L(n) ( λ λ λ(n), F c (n)) L L L(n) = f 0 ( λ λ λ(n), 0, F c (n)) ( λ λ λ(n), W W W (n), L L L(n), F c (n)) (λ, W, L,F F c ) R 3d (l 1 ) d. ˆRˆRˆR(n) 0 R R R(n) = L L L(n) Q Q Q(n) 0 ρ(( λ λ λ(n), W W W (n), L L L(n), F c (n)), ( λ λ λ(n), W W W (n), Q Q Q(n), F c (n))) 0, ρ R 3d (l 1 ) d ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), F c (n)) (λ, W, L, L,F F c ) R 4d (l 1 ) d. ŴŴŴ (n) = g( ˆF c (n)) (ˆλˆλˆλ(n), ŴŴŴ (n), ˆF c (n)) (Λ, Ω, Γ ) R 2d (l 1 ) d, Ω = g(γ ) ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω,F F c, Γ ) R 6d (l 1 ) 2d. ˆLˆLˆL(n)

k = 0, 1,, d 1 k ˆLˆLˆL(n) n( Lk (n) L k ) = ( k n( λ k j (n) F k j,j(n) c + ( k λ k j Fk j,j c + d m=1 j=1 m=1 j=1 d λ d j (n) F d j,(m 1)d+j+k c (n)) λ d j Fd j,(m 1)d+j+k c ) ) = ( k n ( λk j (n) F k j,j(n) c λ k j (n)fk j,j c + λ k j (n)fk j,j c λ k j Fk j,j) c = + m=1 j=1 d ( λd j (n) F d j,(m 1)d+j+k c (n) λ d j (n)fd j,(m 1)d+j+k c + λ d j (n)fd j,(m 1)d+j+k c λ d jfd j,(m 1)d+j+k c ) ) k + ( πk j( λ λ λ(n) 1 ) π 2 j πk j 1 ( ˆF c (n) ) + πk j(ˆλˆλˆλ(n) 1 ) ) π 2 j πk j(f 1 F c ) d m=1 j=1 +π 1 d j ( πd j( λ λ λ(n) 1 ) π 2 (m 1)d+j+k πd j 1 ( ˆF c (n) ) ) ) (ˆλˆλˆλ(n) π 2 (m 1)d+j+k πd j(f 1 F c ) = Π 1 k( λ λ λ(n) ) Π 2 k ( ˆF c = f F c,k( λ λ λ(n), ˆλˆλˆλ(n), ˆF c (n)), ˆF c (n) ) + Π 1 ) k(ˆλˆλˆλ(n) Π 2 k(f F c ) ˆLˆLˆL(n) = f F ( λ λ λ(n), ˆλˆλˆλ(n), ˆF c c (n) ). f F c Γ (l 1 ) d ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), ˆLˆLˆL(n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω, Υ,F F c, Γ ) R 7d (l 1 ) 2d, Υ = f F c (λ, Λ, Γ ) ˆRˆRˆR(n) 0 ˆLˆLˆL(n) ˆQˆQˆQ(n) 0 ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), ˆQˆQˆQ(n), ˆLˆLˆL(n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω, Υ, Υ,F F c, Γ ) R 8d (l 1 ) 2d. ˆRˆRˆR(n) X i N(µ i, σi 2) i = 1, 2, X n X n X N(µ, σ 2 ) µ = lim µ i σ 2 = lim n n σ2 i X n X L 2 n

ϕ Xi (t) = Ee itxi = exp(iµ i t 2 1 σi 2t2 ) X i X n X lim n EeitXi = Ee itx t lim µ i = µ lim n n σ2 i = σ2 µ σ 0 lim mu i = lim n n σ2 i = Ee itx = exp(iµt 2 1 σ 2 t 2 ) X N(µ, σ 2 ) lim µ i = µ lim n n σ2 i = σ2 sup EXn 4 = sup(µ 4 n + 6µ 2 nσn 2 + 3σn) 4 < n n {Xi 2} X n X L 2 n X = a in i a T N Y = b in i b T N N (N, N) = Σ N (X, Y ) (X, X) = (X) = a i a j Σi,j N <, j=1 (Y, Y ) = (Y ) = b i b j Σi,j N < j=1 (X, Y ) = E(XY ) = a i b j Σi,j N <. j=1 α β R αx + βy X n = n a in i Y n = n b in i X Y αx n + βy n αx + βy αx n + βy n n n j=1 (αa i + βb i )(αa j + βb j )Σi,j N αx + βy j=1 (αa i + βb i )(αa j + βb j )Σi,j N (X, Y ) E(XY ) X n X Y n Y L 2 X n Y n XY L 1 E(XY ) = lim E(X ny n ) = n n n j=1 a ib j Σi,j N = j=1 a ib j Σi,j N < X Y (X, Y ) = E(XY ) (X, X) (Y, Y ) X = Y π 1 k (Λ) = Λ k Ga k,j = π 2 j π1 k (Γ ) k = 0, 2,, d 1 j = 0, 1, 2 Γ (l 1 ) d Ω = g(γ ) Υ = f F c F c F c (λ, Λ, Γ ) (Ω, Υ )

L 2 ( (Ω, Ω)) k,l = ( πj 2 πk(γ 1 ), πj 2 πl 1 (Γ )) = Σ Γ :k,l i,j, ( (Υ, Υ )) k,l = (f F c,k(λ, Λ, Γ ), f F c,l(λ, Λ, Γ )) = ( πj 2 (Π 1 k(λ))πj 2 (Π 2 k(γ )) + j=1 πj 2 (Π 2 k(f F c ))πj 2 (Π 1 k(λ)), πj 2 (Π 1 l (λ))πj 2 (Π 2 l (Γ )) + πj 2 (Π 2 l (F F c ))πj 2 (Π 1 l (Λ))) = ( λ [k j] Γ [k j],j + F[k j],j c Λ [k j], = i=0 + λ [k i] λ [l j] Σ Γ :[k i],[l j] i+1,j+1 + F[k i],i c λ Λ,Γ :[l j] [l j]σ i=0 i=0 [k i]+1,j+1 + i=0 ( (Ω, Υ )) k,l = ( πj 2 πk(γ 1 ), πj 2 (Π 1 l (λ))πj 2 (Π 2 l (Γ )) + = λ [l j] Σ Γ :k,[l j] i+1,j+1 + λ [l j] Γ [l j],j + λ [k i] F[l j],j c :[k j] ΣΛ,Γ [l j]+1,i+1 F c [l j],j Λ [l j]) F c [k i],i F c [l j],j ΣΛ [k i]+1,[l j]+1, F[l j],j c :k ΣΛ,Γ [l j]+1,i+1, πj 2 (Π 2 l (F F c ))πj 2 (Π 1 l (Λ))) [x] x mod d W k k = 0, 1,, d 1 F c k,j 1 F k,j P (W k j) O(j (3+δ) ) j 0 δ > 0 W (i) k (I W (i) 0, I k W (i) 1, ) F c k (F k,0 c, F k,1 c k R d EY (i) = µ Y I (i) k W (i) k, ) X(i) k µ Y I(i) k W k F c k Y (i) µ Y (µ Y,0, µ Y,1,, µ Y,d 1 ) > 0 (Y (i) ) = Σ Y Y (j) k = 0, 1,, d 1 i, j 1 S(n) (S 0 (n), S 1 (n),, S d 1 (n)) S 0(n) G(n) (G 0 (n), G 1 (n),, G d 1 (n)) ( n S1(n) 0, Y (i) Sd 1(n) 1,, d 1 ). n 1/2 (S(n) nµ µ Y, G(n)) (Λ, Γ (Γ 0, Γ 1,, Γ d 1 )) R d (l 1 ) d, (Λ, Γ ) R d (l 1 ) d Λ N(0, Σ Y ) (Γ k,j, Γ k,s ) = µ Y,k F k,j F c k,s 0 k d 1 0 j s Λ, Γ 0, Γ 1,, Γ d 1

n 1/2 (S(n) nµ µ Y ) Λ N(0, Σ Y ). Z k l 1 0 k d 1 Z k (Z k,j, Z k,l ) = F k,j Fk,l c S k (n) (S k (n)) 1/2 S k (n) n 1/2 k Z k l 1 0 k d 1, k Γ k = µ 1/2 Y,k Z k l 1 0 k d 1. Γ k (Γ k,j, Γ k,s ) = µ Y,k F k,j Fk,s c j s Y (i) {ỸY (i) } Y (i) S(n) ( S 0 (n), S 1 (n),, S d 1 (n)) n ỸY (i) n 1/2 (S(n) nµ µ Y ) n 1/2 G 0 (n) n 1/2 S 0(n) n 1/2 (S(n) nµ µ Y, G 0 (n)) (Λ, Γ 0 ) R d l 1, Λ Γ 0 n 1/2 G 0 (n) G 0 (n) 1 0 n ϵ > 0 0 S P (n 1/2 G 0 (n) G 0(n) 0 (n) 1 > ϵ) = P ( S 0(n) P ( 2P ( S0(n) 0 max I=1,2,, n 3/4 =2P ( max 2P ( I I=1,2,, n 3/4 max I=1,2,, n 3/4 S0(n) 0 0 1 > n 1/2 ϵ) 0 1 > n 1/2 ϵ, S 0 (n) S 0 (n) n 3/4 ) + P ( S 0 (n) S 0 (n) > n 3/4 ) 0 1 > n 1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ) I I 0,j > n1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ) 0,j > n1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ). δ 1 δ/2 C ( j (1+δ1) ) 1 ( 0,j ) = F 0,jF c 0,j P ( 3 27 max I=1,2,, n 3/4 max I=1,2,, n 3/4 P ( I 0,j > n1/2 ϵ) I C 2 n 1 ϵ 2 j 2+2δ1 n 3/4 F 0,j F0,j c 27C 2 ϵ 2 n 1 n 3/4 P ( max I=1,2,, n 3/4 0,j > Cn1/2 ϵj (1+δ1) /3) 27 I 0,j > Cn1/2 ϵj (1+δ1) ) max I=1,2,, n 3/4 ( I X(i) 0,j ) C 2 nϵ 2 j (2+2δ1) j 2+2δ1 F0,j c 0 n,

Fk,j c O(j (3+δ) ) j2+2δ1 F0,j c P ( S 0 (n) S 0 (n) > n 3/4 ) (S 0(n) S 0 (n)) n 3/2 2nΣY 1,1 n 3/2 0 n. 0 n n 1/2 (S(n) nµ µ Y, G 0 (n)) (Λ, Γ 0 ) R d l 1. Y (i) G 1 (n), G 2 (n),, G d 1 (n) λ = E(A 0+(m 1)d, A 1+(m 1)d,, A d 1+(m 1)d ) F c W L W (C1) Y (i) A i W (i) k i k + (m 1)d m = 1, 2, EW (i) k = W k σw,k 2 (i) (W k ) < (C1) (C2) ˆRˆRˆR(n) 0 ˆRˆRˆR(n) = ˆLˆLˆL(n) ˆQˆQˆQ(n) = n 1/2 ( L L L(n) Q Q Q(n)) 0 k d 1 n 1/2 ( L k (n) Q k (n)) 0 n F c L k (n) Q k (n) = n 1 n d Y d j+(m 1)d,j+k+(s 1)d. m=1 j=1 s=n m+1 ϵ > 0 P (n 1/2 ( L k (n) Q k (n)) > ϵ) n d =P (n 1/2 Y d j+(m 1)d,j+k+(s 1)d > ϵ) m=1 j=1 s=n m+1 d n P ( Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) j=1 m=1 s=n m+1 d (P ( j=1 + P ( n n 1/4 m=1 n Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) s=n m+1 m=n n 1/4 +1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ)). n

n n 1/4 P ( m=1 n n 1/4 P ( P ( m=1 n s=n m+1 s= n 1/4 +1 m=1 s= n 1/4 +1 n m=1 n 1/2 dλ d j ϵ 1 Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) s= n 1/4 +1 EY d j+(m 1)d,j+k+(s 1)d n 1/2 dϵ 1 n 1/2 d 1 ϵ s= n 1/4 +1 F c d j,s n 1/2 Cdλ d j ϵ 1 n 1/4 s= n 1/4 +1 s (3+δ) ds λ d j F c d j,j+k+(s 1)d =n 1/2 Cdλ d j (2 + δ) 1 ϵ 1 n 1/4 (2+δ) 0 n. S k (n) = n m=1 A k+(m 1)d n P ( Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) P ( m=n n 1/4 +1 s=n m+1 n m=n n 1/4 +1 s=0 S d j ( n 1/4 ) Y d j+(m 1)d,s > n 1/2 d 1 ϵ) = P ( W (i) d j > n1/2 d 1 ϵ) ( S d j( n 1/4 ) W (i) d j ) + (E( S d j ( n 1/4 ) W (i) d j ))2 nd 2 ϵ 2 =n 1 d 2 ϵ 2 ( n 1/4 Σd j+1,d j+1w Λ d j + n 1/4 λ d j σw,d j 2 + n 1/4 2 λ 2 d jwd j) 2 0 n. n 1/2 ( L k (n) Q k (n)) 0 n (C2) (Ω, Υ ) Σ Λ:k,l = 0 k l Σ Λ,Γ :k = 0 k Σ Γ :k,k i+1,j+1 = λ kf k,i Fk,j c 0 i j F k,j c (n) = 0 0 k d 1 n j (C1) Fk,j c = 0 k j ˆF c (n) (l 1 ) d Γ k,j = 0 k j Γ (l 1 ) d (C2) ˆRˆRˆR(n) = ˆLˆLˆL(n) ˆQˆQˆQ(n) = n( L L L(n) Q Q Q(n)) ne(n) 0 E(n) L L L(n) Q Q Q(n) 1 n > N Y k,j = 0 j > Nd ne(n) = n 1 n d j=1 n d m=1 j=1 s=(n m)d n 1/2 n m=n N+1 Y d j+(m 1)d,j+s = n 1/2 n d Nd m=n N+1 j=1 s=(n m)d NdA d j+(m 1)d n 1/2 d 2 N 2 M 0 n, M (C2) Y d j+(m 1)d,j+s

L = λw L = λw L = λw L = λw L = λw L = λw 50 th L = λw L = λw L = λw L = λw