MATH G9906 RESEARCH SEMINAR IN NUMBER THEORY (SPRING 2014) LECTURE 1 (FEBRUARY 7, 2014) ERIC URBAN

Similar documents
Appendix A. Application to the three variable Rankin-Selberg p-adic L-functions. A corrigendum to [Ur14].

15 Elliptic curves and Fermat s last theorem

Workshop on Serre s Modularity Conjecture: the level one case

Calculation and arithmetic significance of modular forms

Introductory comments on the eigencurve

Toric coordinates in relative p-adic Hodge theory

Up to twist, there are only finitely many potentially p-ordinary abelian varieties over. conductor

The Galois representation associated to modular forms pt. 2 Erik Visse

Automorphic Galois representations and Langlands correspondences

Residual modular Galois representations: images and applications

Overview of the proof

p-adic families of modular forms

Twists and residual modular Galois representations

Galois Representations

SERRE S CONJECTURE AND BASE CHANGE FOR GL(2)

Problems on Growth of Hecke fields

Mod p Galois representations attached to modular forms

The Arithmetic of Noncongruence Modular Forms. Winnie Li. Pennsylvania State University, U.S.A. and National Center for Theoretical Sciences, Taiwan

Galois groups with restricted ramification

Modularity of Abelian Varieties

p-adic Modular Forms: Serre, Katz, Coleman, Kassaei

Number Theory Seminar Spring, 2018: Modularity

On the arithmetic of modular forms

A SHORT NOTE ON P-ADIC FAMILIES OF HILBERT MODULAR FORMS

Class groups and Galois representations

TATE CONJECTURES FOR HILBERT MODULAR SURFACES. V. Kumar Murty University of Toronto

Cusp forms and the Eichler-Shimura relation

Pseudo-Modularity and Iwasawa Theory

Hecke fields and its growth

Galois representations and automorphic forms

What is the Langlands program all about?

Reciprocity maps with restricted ramification

Séminaire BOURBAKI Novembre ème année, , n o p-adic FAMILIES OF MODULAR FORMS [after Hida, Coleman, and Mazur]

The p-adic Jacquet-Langlands correspondence and a question of Serre

Recent Work on Serre s Conjectures

Kleine AG: Travaux de Shimura

Overview. exp(2πiq(x)z) x Z m

EKNATH GHATE AND VINAYAK VATSAL. 1. Introduction

Critical p-adic L-functions and applications to CM forms Goa, India. August 16, 2010

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

p-adic iterated integrals, modular forms of weight one, and Stark-Heegner points.

EXTENSIONS AND THE EXCEPTIONAL ZERO OF THE ADJOINT SQUARE L-FUNCTIONS

Peter Scholze Notes by Tony Feng. This is proved by real analysis, and the main step is to represent de Rham cohomology classes by harmonic forms.

Ordinary forms and their local Galois representations

Question 1: Are there any non-anomalous eigenforms φ of weight different from 2 such that L χ (φ) = 0?

Endomorphism algebras of semistable abelian varieties over Q of GL(2)-type

Arakelov theory and height bounds

The Galois Representation Attached to a Hilbert Modular Form

Approaches to computing overconvergent p-adic modular forms

Congruences, graphs and modular forms

Draft: January 2, 2006 ON THE INTERPOLATION OF SYSTEMS OF EIGENVALUES ATTACHED TO AUTOMORPHIC HECKE EIGENFORMS

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26

On the equality case of the Ramanujan Conjecture for Hilbert modular forms

Draft: March 23, 2011 LOCAL-GLOBAL COMPATIBILITY IN THE p-adic LANGLANDS PROGRAMME FOR GL 2/Q

l-adic MODULAR DEFORMATIONS AND WILES S MAIN CONJECTURE

( files chap2 to chap

p-adic families of modular forms II

HIDA THEORY NOTES TAKEN BY PAK-HIN LEE

Non CM p-adic analytic families of modular forms

Hecke Operators for Arithmetic Groups via Cell Complexes. Mark McConnell. Center for Communications Research, Princeton

NEW EXAMPLES OF p-adically RIGID AUTOMORPHIC FORMS

The Asymptotic Fermat Conjecture

LECTURE 2: LANGLANDS CORRESPONDENCE FOR G. 1. Introduction. If we view the flow of information in the Langlands Correspondence as

Galois Representations

Triple product p-adic L-functions for balanced weights and arithmetic properties

The Local Langlands Conjectures for n = 1, 2

Artin Conjecture for p-adic Galois Representations of Function Fields

A brief overview of modular and automorphic forms

VARIATION OF IWASAWA INVARIANTS IN HIDA FAMILIES

From K3 Surfaces to Noncongruence Modular Forms. Explicit Methods for Modularity of K3 Surfaces and Other Higher Weight Motives ICERM October 19, 2015

The Galois Representation Associated to Modular Forms (Part I)

Honours Research Project: Modular forms and Galois representations mod p, and the nilpotent action of Hecke operators mod 2

Growth of Hecke fields over a slope 0 family

Computer methods for Hilbert modular forms

Raising the Levels of Modular Representations Kenneth A. Ribet

Modulformen und das inverse Galois-Problem

p-adic FAMILIES AND GALOIS REPRESENTATIONS FOR GSp(4) AND GL(2)

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

Lifting Galois Representations, and a Conjecture of Fontaine and Mazur

ON MODULAR GALOIS REPRESENTATIONS MODULO PRIME POWERS.

Universität Regensburg Mathematik

14 From modular forms to automorphic representations

A brief introduction to the work of Haruzo Hida

l-adic Representations

MODULAR EIGENFORMS AT THE BOUNDARY OF WEIGHT SPACE. Contents. Introduction

SPEAKER: JOHN BERGDALL

Families of modular forms.

Fundamental groups, polylogarithms, and Diophantine

RIGIDITY OF P -ADIC COHOMOLOGY CLASSES OF CONGRUENCE SUBGROUPS OF GL(N, Z) Avner Ash*, David Pollack**, and Glenn Stevens***

Conductors in p-adic families

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions

A FINITENESS PROPERTY OF ABELIAN VARIETIES WITH POTENTIALLY ORDINARY GOOD REDUCTION

TWO-VARIABLE p-adic L-FUNCTIONS

HIGHLY REDUCIBLE GALOIS REPRESENTATIONS ATTACHED TO THE HOMOLOGY OF GL(n, Z)

THE ARITHMETIC OF ELLIPTIC CURVES AN UPDATE

Iwasawa algebras and duality

p-adic gauge theory in number theory K. Fujiwara Nagoya Tokyo, September 2007

The arithmetic of elliptic curves An update. Benedict H. Gross. In 1974, John Tate published The arithmetic of elliptic curves in

On the cohomology of congruence subgroups of SL 4 (Z)

On Galois representations associated to Hilbert modular forms

Transcription:

MATH G9906 RESEARCH SEMINAR IN NUMBER THEORY (SPRING 014) LECTURE 1 (FEBRUARY 7, 014) ERIC URBAN NOTES TAKEN BY PAK-HIN LEE 1. Introduction The goal of this research seminar is to learn the theory of p-adic modular forms and the notion of p-adic families of modular forms. Today I ll draw a picture of this subject, state some of the known results and arithmetic applications of this theory. One of the goals of number theory is to understand the Galois group of number fields. One way is to understand its representations. A lot of representations are obtained from automorphic representations. There is a set of conjectures about Galois representations of number fields that come from the work of Langlands. Take G to be a connected reductive group over Q (for simplicity). By Langlands and Fontaine Mazur, we can think of the correspondence between: irreducible automorphic representations of G(A) (the adelic points of G) of algebraic type; ρ compatible systems of Galois representations G Q := Gal(Q/Q) L G(Q l ) for all primes l which are unramified away from finitely many primes and de Rham at all l, i.e. ρ Gal(Ql /Q l ) comes from geometry (the étale cohomology of a variety). (In particular, the Hodge Tate numbers form a discrete set.) For example, if G = GL n, the Langlands dual is just L G = GL n. A representation of algebraic type means the following. If we have an irreducible representation π, we can decompose it into local representations π = l π l. This includes the prime at infinity π. We require that the infinitesimal character be algebraic, i.e. λ is an algebraic weight of G over C. Compatibility can be made precise. The Galois representation is unramified away from finitely many primes, which depend on the decomposition of the corresponding representation π. Remark. The discrete spectrum contains the cuspidal spectrum and therefore there is no continuous variation on the left hand side. The notion of variation is one of the most powerful in mathematics. Let π be a cuspidal representation of GL n. Then π det s is the only continuous variation (in the archimedean sense). This gives rise to an L-function L(π, s), which gives us information about the variation. Last updated: February 11, 014. Please send corrections and comments to phlee@math.columbia.edu. 1

The point is that if we remove the de Rham condition at p, then we can allow ourselves to have a lot of variations on Galois representations. Correspondingly, if we relax the algebraic type condition, we expect to have p-adic variations on the left hand side of this picture. Thus we expect to have { } { } p-adic automorphic representations of G(A) ramified away from finitely many Galois representations GQ L G(Q p ) un-. primes The primes are given by those where the automorphic representation ramifies. One of the questions would be to give a meaning to left hand side in general. We know that the theory of L-functions for automorphic representations is quite useful. We have p- adic L-functions that are going to give a lot of information about the left hand side. There should also be a link with Galois representations. { } { } p-adic automorphic representations of G(A) ramified away from finitely many Galois representations GQ L G(Q p ) un- primes {p-adic L-functions} We would like to give a more precise meaning to this picture and see whether we can use it to prove arithmetic results. To be more precise, let G = GL()/Q. We can restrict the picture to { } (cuspidal) holomorphic modular forms of weight k 1 (irreducible) Galois representations G Q GL (Q p ) unramified away from. finitely many primes and de Rham at p Note that we don t have Maass forms of algebraic type. This correspondence follows from the work of many people. To go from the left to the right, we have Eichler Shimura, Deligne, etc. To go from the right to the left, we have Wiles, Taylor Wiles, Khare Wintenberger, Kisin, etc. We know the work of Wiles implies the proof of Fermat s Last Theorem, so it s clear that this picture has a lot of arithmetic consequences. In fact, this picture embeds into a more general picture.. p-adic theory The first example of p-adic variations of modular forms is due to Serre. Let k 4. Then we have the Eisenstein series E k (τ) of weight k such that the q-expansion is given by E k (τ) = ζ(1 k) + σ k 1 (n)e πinτ. Here τ h = {τ C : Im(τ) > 0} and σ k 1 (n) = d n dk 1. What is going to be a p-adic variation? We want to show that if we start from a modular form, we can find other modular forms that are close to the original one (close in the p-adic sense, i.e. congruent modulo high powers of p). If we have k k (mod (p 1)p n ) and d is prime to p, then d k 1 d k 1 (mod p n ). Therefore if d is not divisible by p, we can say all the Fourier coefficients are close n=1

to each other for E k and E k. But d may by divisible by p, so we consider a modified version of E k. Define Ek ord (τ) := E k (τ) p k 1 E k (pτ) = ζ(p) (1 k) + σ (p) k 1 (n)eπinτ where σ (p) k 1 (n) = d n,(d,p)=1 dk 1. All Fourier coefficients, except possibly the first one, satisfy the congruence condition. As a first consequence of Serre s theory, it can be proved by the q-expansion principle that the first coefficient ζ (p) (1 k) also satisfies the same congruence, so Ek ord (τ) Ek ord (τ) (mod pn ), i.e. Ek ord (τ) Ek ord (τ) p p n. Here if f = n=1 a nq n, then f p = sup n a n p. This is a family of modular forms close to the original one. This was the original observation by Serre to construct p-adic L-functions. Now the question is, what is a p-adic family of modular forms? The first naïve definition is a set {f k } k indexed by the integers, where f k is an eigenform of weight k such that if k and k are close p-adically, then f k and f k are also close p-adically. Here close means k k (mod (p 1)p n ). We should think of k as the morphism [k] : G m G m given by t t k, or equivalently Z p Q p given by t t k. This is where the condition comes from: t k t k (mod p n ) if k k (mod (p 1)p n ). In general, f k and f k should have the same level away from p. To answer what happens at p, we have to give a more precise definition depending on the type of the family. Here we embed the algebraic characters of G m into Hom cont (Z p, Q p ). Let s assume for simplicity that p is odd. Then we can decompose Z p = µ p 1 (1 + pz p ), where 1 + pz p = 1 + p, i.e. topologically generated by 1 + p. To give a continuous homomorphism χ : Z p Q p amounts to specifying a pair (χ µp 1, χ(1 + p)) where χ(1 + p) 1 p < 1. Therefore, p Hom cont (Z p, Q p ) = {ω a } D 1,1 where ω is the Teichmüller character and D 1,1 = {z Q p : z 1 p < 1}. Here we already have a p-adic topology. To say k and k are close means their corresponding characters lie in the same connected component in this decomposition. We call Hom cont (Z p, Q p ) the weight space, denoted by X. Here we have a p-adic rigid-analytic structure on this space. We may ask if we can extend a family to a continuous map on the space X. The second definition is that a family is a formal q-expansion F = n=0 a nq n where a n is a continuous (or analytic) function on ω a D 1,1 X, such that if k a (mod p 1), then at [k] ω a D 1,1 X the evaluation F k = F([k]) = a n ([k])q n is the q-expansion of an eigenform of weight k. Here we took the whole connected component of X, but the definition also makes sense if we restrict to an open set called an open affinoid. 3 n=0 a=0 n=1

This is a perfectly good definition, but it does not answer all questions we may have because this would mean the family of modular forms is parametrized by just the weight space. We can ask the following question. Given an eigenform of weight k 1, does there exist a p-adic family containing it? This question cannot be in general positively answered, at least in this definition. Even with a more general definition, we need to make some assumptions on the given modular form. Even for the Eisenstein series, we have to modify it to make sure E k Ek ord has p-adically continuous weight. The first positive answer for cusp forms is due to Hida in the 80 s. Let f 0 be an eigenform of weight k 0. There are two assumptions: f 0 is of level Np, with Nebentypus trivial at p; the p-th Fourier coefficient satisfies a(p, f 0 ) p = 1. (For example, a(p, E ord k ) = 1.) Hida proved that there exists a family for all connected components of the weight space. But in general a n won t be a function on X, and we have to take a finite cover. More precisely, there exist a finite cover w : V ω a D 1,1, F = a n q n where a n A(V), and a special point x 0 V such that w(x 0 ) = [k 0 ] and F x0 is the q-expansion of f 0 such that if x V(Q p ) with w(x) = [k x ] where k x 1, then F x = a n (x)q n Q p [[q]] is the q-expansion of a modular form of weight k x. In other words, up to taking a finite cover, we really have a family of modular forms on the connected components. The level away form p is the same as the original form f 0. If we take ψ to be a finite order character of 1 + pz p, we can consider [k] ψ = (ω k, (1 + p) k ψ(1 + p)) ω a D 1,1. If w(x) = [k x ] ψx then F x is the q-expansion of an eigenform of weight k x and level Np cond(ψ). Taking ψ to be arbitrarily ramified, the level can be an arbitrarily high power of p. This result was further generalized by Coleman, with the weaker assumption a(p, f 0 ) 0. In that situation, we have to introduce the notion of slope. The slope of f is defined to be v p (a(p, f)) <. Coleman s result is that there exist an open affinoid subdomain U ω a D 1,1 with a finite cover w : V U, x 0 V with w(x 0 ) = [k 0 ], and F = a n q n A(V)[[q]], such that for all x V with w(x) = [k x ] and k x 1 > v p (a(p, f 0 )), we have that F x is the q-expansion of a classical eigenform of weight k x. The condition k x 1 > v p (a(p, f 0 )) is important. We can rephrase this result as saying overconvergent eigenforms of slope < k 1 are classical. In Hida s setting, v p (a(p, F x )) is constant in the family. Here it s not constant and we have to restrict the family to a smaller subdomain. A generalization of this is the Coleman Mazur eigencurve. Fix a level N prime to p. They constructed an eigencurve E N, which is a rigid-analytic space over Q p of equidimension 1, with a map w : E N X (not finite anymore) such that there is a correspondence between every x E N and an overconvergent eigenform of weight w(x), level Np rx and finite slope, where r x is the smallest integer such that w(x) is analytic on 1+p rx Z p. In particular, E N (Q p ) contains all the classical eigenforms of weight k 1 of finite slope. The Coleman family involves gluing together all neighborhoods V of x 0 and U of [k 0 ] into an eigencurve. 4

The ordinary forms EN 0 E N is nicer, in that EN 0 X is finite. A recent result shows that the eigencurve is proper over the weight space X, so it doesn t blow off to infinity. This is the picture for GL() over Q. We can also look at the picture on the Galois side and study families of Galois representations. Let s say we fix ρ 0 : G Q GL (F p ) and ρ : G R GL (Z p ) such that ρ mod m Zp = ρ0. The space Def(ρ 0 ) is of dimension 3. If we look at all Galois representations coming from modular forms, then we should get something of dimension. The eigencurve is of dimension 1, because it parametrizes not only ρ Fx but also the slope. There are generalizations of this picture to other groups G. New phenomena arise. There are essentially two situations: When G(R) has discrete series, we get an equidimensional eigenvariety, at least for geometric overconvergent forms. When G(R) has no discrete series, the eigenvariety has smaller dimension and is no longer equidimensional. There are mysteries in this case. New objects, which are truly p-adic automorphic representations (in the sense that they are not limits of classical ones), appear. 3. Schedule Feb 14 (D. Hansen): p-adic L-functions for GL() Feb 8 (Feiqi): Hida theory for GL() Mar 7 (Pak-Hin): Spectral theory of compact operators on p-adic Banach spaces and applications (Why? The fundamental ingredient of the theory of Coleman and Coleman Mazur is to study the Hecke operator U p acting on the space of overconvergent modular forms, which form a p-adic Banach space on which U p is a compact operator.) Mar 14 (Xin): Canonical subgroups (To construct U p on the space of overconvergent forms, as a compact operator.) Mar 8 (Dan): Pilloni s paper on overconvergent modular forms This is the geometric theory. Hopefully there will be some talks on the cohomological approach. 5