Unit 8 Momentum, Impulse, & Collisions

Similar documents
Add more here! Equation Sandbox In Unit 7, some of the following equations will be used. Practice isolating variables to prepare for it.

Center of Mass & Linear Momentum

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

Practice Test for Midterm Exam

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

AP Physics 1 Momentum and Impulse Practice Test Name

PSI AP Physics I Momentum

The total momentum in any closed system will remain constant.

Chapter 6: Momentum and Collisions

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Momentum Practice Test

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

2016 PHYSICS FINAL REVIEW PACKET

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Chapter 6 - Linear Momemtum and Collisions

Momentum Practice Problems

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

Impulse,Momentum, CM Practice Questions

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Part I Review Unit Review Name Momentum and Impulse

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

Unit 9 Rotational Motion & Torque

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Impulse/Momentum And Its Conservation

Unit 3 Motion & Two Dimensional Kinematics

HONORS PHYSICS Linear Momentum

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

UNIT 2G. Momentum & It s Conservation

This Week. 9/5/2018 Physics 214 Fall

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

Momentum ~ Learning Guide Name:

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Chapter Assessment Use with Chapter 9.

An Introduction to Momentum (Doodle Science)

Physics. Impulse & Momentum

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

Momentum and Impulse Practice Multiple Choice

Ch 8 Momentum Test Review!

Section 4: Newton s Laws and Momentum

This Week. 7/29/2010 Physics 214 Fall

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

LABORATORY VI MOMENTUM

Momentum and Collisions

Physics Midterm Review KEY

S15--Phys Q2 Momentum

Physic 602 Conservation of Momentum. (Read objectives on screen.)

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Preview. Momentum and Collisions Section 1. Section 1 Momentum and Impulse. Section 2 Conservation of Momentum

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

Physics 231. Topic 6: Momentum and Collisions. Alex Brown October MSU Physics 231 Fall

Unit 5 Circular Motion & Gravitation

Physics 10 Lecture 6A. "And in knowing that you know nothing, that makes you the smartest of all. --Socrates

Name: Class: Date: d. none of the above

Sometimes (like on AP test) you will see the equation like this:

CHAPTER 26 LINEAR MOMENTUM AND IMPULSE

PHYSICS 231 INTRODUCTORY PHYSICS I

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

1. The diagram below shows the variation with time t of the velocity v of an object.

Unit 10 Electrostatics Essential Fundamentals of Electrostatics 1. Voltage is analogous to electric pressure, which moves charges. Add more here!

Momentum. Physics Momentum and Impulse Practice

AP Homework 6.1. (4) A kg golf ball initially at rest is given a speed of 25.0 m/s when a club strikes. If the club and ball are

Algebra Based Physics

Conservation of Momentum

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Momentum. TAKE A LOOK 2. Predict How could the momentum of the car be increased?

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

Momentum and Collisions

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Activity 8. Conservation of Momentum. What Do You Think? For You To Do GOALS. The outcome of a collision between two objects is predictable.

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

An astronaut of mass 80 kg pushes away from a space Both!p x

PRACTICE TEST for Midterm Exam

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum, Work and Energy Review

Bumper Cars. Question

Chapter 7. Impulse and Momentum

Conservation of Momentum Continued S2:A8: 12/09/08

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Momentum and Collisions. Resource Class/momentum/momtoc.html

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A

Work, Energy and Momentum Notes 1 Work and Energy

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Transcription:

Unit 8 Momentum, Impulse, & Collisions Essential Fundamentals of Momentum, Impulse, & Collisions 1. Momentum is conserved in both elastic, and inelastic collisions. Early E. C.: / 1 Total HW Points Unit 8: / 22 Total Lab Points Unit 8: / 18 Unit 8 Apps.: / 5 Late, Incomplete, No Work, No Units Fee? Y / N Add more here! Equation Sandbox In Unit 8, some of the following equations will be used. Practice isolating variables to prepare for it. 21

Possible 8.1 Pts: 5 Late, Incomplete, No Work, No Units Fee: -1-2 -3 Final Score: / 5 8.1 Problems Momentum and Impulse Sections 6.1 of your book. 1. A. If a 60.0-kg woman is riding in a car traveling at 90.0 km/h, what is her linear momentum relative to the ground? B. What is her momentum relative to the car? 2. A 0.150-kg baseball travelling with a positive horizontal speed of 4.50 m/s is hit by a bat and then moves with a speed of 34.7 m/s in the opposite direction. What is the change in the ball s momentum? 3. A. In a football game, a lineman usually has more mass than a running back. Will a lineman always have more momentum? Explain your answer. B. Who has greater momentum, a 75-kg running back moving at 4.5 m/s, or a 120-kg lineman moving at 3.0 m/s? Prove your answer mathematically. 22

Possible 8.2 Pts: 4 8.2 Problems Impulse Section 6.3 of your book. Late, Incomplete, No Work, No Units Fee: -1-2 -3 Final Score: / 4 1. A pool player imparts an impulse of 3.2 N s to a stationary 0.25-kg cue ball with a cue stick. What is the speed of the ball just after impact? 2. When hit by a batter, a 0.20-kg softball receives an impulse of 3.0 N s. With what horizontal speed does the ball move away from the bat? 3. A loaded tractor-trailer with a total mass of 5.0 E 3 kg traveling at 3.0 km/h hits a loading dock and comes to a stop in 0.64 s. What is the magnitude of the average force exerted on the truck by the dock? 4. An automobile with a linear momentum of 3.0 E 4 kg m/s is brought to a stop in 5.0 s. What is the magnitude of the average braking force? 23

Possible 8.3 Pts: 4 Late, Incomplete, No Work, No Units Fee: -1-2 -3 Final Score: / 4 8.3 Problems Conservation of Linear Momentum Section 6.3 of your book. 1. A 60.0-kg astronaut floating at rest in space outside a space capsule throws his 2.0 kg hammer such that it moves with a speed of 10.0 m/s relative to the capsule. What happens to the astronaut, qualitatively and quantitatively? 2. To get off a frozen, frictionless lake, a 65.0-kg person takes off her 0.150-kg shoe and throws it horizontally, directly away from the shore with a speed of 2.00 m/s. If the person is 5.00 m from the shore, how long does she take to reach it? 3. A. An explosion of a 10.0-kg bomb releases only two pieces. The bomb was initially at rest and a 4.00-kg piece travels due west at 100.0 m/s immediately after the explosion. What are the speed and direction of the other piece immediately after the explosion? B. How much kinetic energy was released in this explosion? (Hint: Refer to Unit 7.3 notes). 24

Possible 8.4 Pts: 6 8.4 Problems Collisions Section 6.4. of your book. Wizard Challenge Alert! Late, Incomplete, No Work, No Units Fee: -1-2 -3 Final Score: / 6 1. A. A truck (mass = 1500 kg) traveling at 6.5 m/s collides with a stationary car (mass 950 kg) and sticks to it. How fast were the two vehicles traveling just after impact? B. How much kinetic energy did the truck have before the collision? C. How much kinetic energy did the joined vehicles have after the collision? D. What was the change in kinetic energy? 2. A 4.0-kg ball with a velocity of 4.0 m/s in the +x-direction collides head-on elastically with a stationary 2.0-kg ball. What are the velocities of the balls after the collision? 3. A 145 g blob of clay traveling 3.4 m/s hits a larger, stationary blob and sticks to it. How much mass would the stationary blob need in order for the resulting speed of the joined blobs to be 1.1 m/s? 25

Possible 8.5 Pts: 3 Late, Incomplete, No Work, No Units Fee: -1-2 -3 Final Score: / 3 8.5 Problems Center of Mass Section 6.5 of your book. 1. A. Find the average center of mass of the Earth-Moon system. You will have to use values in your resources to answer this problem, or find them on the net. B. Where is that center of mass relative to the surface of the Earth? 2. Locate the center of mass of the system shown in the figure if m1 = 1.0 kg, m2 = 2.0 kg, m3 = 3.0 kg, and m4 = 4.0 kg. 26

AP Physics 1 Unit 8.2 Lab - Balancing Can Activity Reminder: Update Table of Contents Overview One of the better party tricks around is the famous gravity-defying can-balancing trick, where you have an aluminum can with just the right amount of pop in it so that it will balance on the bottom edge at an angle. Be careful about which surface you choose to do this trick on (important documents, computer keyboards, etc)! If you have too much or too little pop the can will tip over, spilling all over and getting you in trouble! Materials Empty Aluminum Can Tap Water 100 ml Graduated Cylinder 10 ml Graduated Cylinder 2 ml Graduated Pipette Short Metric Ruler Mission 1 Measurement and Data Table. Determine how much total water can fit into your empty can. Report volume measurements to the nearest 0.5 ml. Determine the MINIMUM volume of water for the can to balance. Determine the MAXIMUM volume of water for the can to balance. Determine the AVERAGE volume of Correction Credit: Half Balancing Can Lab (8.1) Scoring Guide Table of Contents, Title/Date, Detailed Synopsis, Two Purposes / 2 Mission 1: Data Table Analysis Table Present / 2 Can Volume / 1 Min/Max Volume / 1 Maximum Volume / 1 Average Volume / 1 % Range / 2 Can Profile / 1 Exact Center Marked / 2 x/y Length Labels / 2 Question 1: Difficulties determining center of mass. water for the can to balance. Determine the percentage range (minimum % to maximum %) of filling you can have for the can to balance. Analysis 1. Try and determine the exact center of mass within the can as it is on its edge with an average volume of water inside ((x,y) coordinates). Draw your can s profile in your booklet (with an average water level indicated), with length labels to help your analysis, and define your coordinate system so that I know what you mean. For this, use the by guess and by golly method: using math would require more information than you obtained, as well as involving more difficult math that you have. Question: Rephrase and write in full sentences for full credit. 1. Explain the difficulties you encounter when trying to determine the can/water system s exact center of mass, and describe why you chose the location for center of mass. / 3 Work Not Shown Fee: -1-2 -3 Late Lab Fee: -4 Total: / 18 27

Unit 8 - Momentum, Impulse, Collisions Application Problems, AP Test Preparation Questions AP Physics 1 Presentation Points: / 5 Late Fee: -2 Completion (Booklet Check) / 5 Your grade on this problem set depends on the presentation you provide for your assigned problems, and whether all problems are complete when you submit your Booklet at the end of the Unit. Application Problems 1. What is the momentum of a 455 gram bullet traveling at 440 m/s? How fast would you have to be going to equal that? 2. An exploding mass imparts an impulse of 230 N s to a stationary 1.4 kg piece of shrapnel. What is the speed of the shrapnel just after the explosion? How much kinetic energy does the shrapnel have? 3. A 65.3-kg man standing on a frictionless surface throws a 7.26-kg shot put horizontally. The shot put s kinetic energy is 12.2 J upon launch. How fast will the man be moving in the opposite direction as he throws it? 4. A dropped rubber ball hits the floor with a speed of 6.2 m/s and rebounds to a height of 0.59 m. What percent of the initial kinetic energy was lost in the collision? 5. Find the average center of mass in the earth-sun system. Information to solve this problem is at the back of your Booklet. How far away from the surface of the sun is this point? 28

AP Test Questions 1. An object of mass 2 kg has a linear momentum of magnitude 6 kg x m/s. what is this object s kinetic energy? a) 3 J b) 6 J c) 9 J d) 12 J 2. A ball of mass 0.5 kg, initially at rest, acquires a speed of 4 m/s immediately after being kicked by a force of strength 20 N. For how long did this force act on the ball? a) 0.01 s b) 0.1 s c) 0.2 s d) 1 s 3. A box with mass 2 kg accelerates in a straight line from 4 m/s to 8 m/s due to the application of a force whose duration is 0.5 s. Find the average strength of this force. a) 4 N b) 8 N c) 12 N d) 16 N 4. A ball of mass m traveling horizontally with velocity v strikes a massive vertical wall and rebounds back along its original direction with no change in speed. What is the magnitude of the impulse delivered by the wall to the ball? a) ½ mv b) mv c) 2mv d) 4mv 5. Two objects, one of mass 3 kg and moving with a speed of 2 m/s and the other of mass 5 kg and speed 2 m/s, move toward each other and collide head-on. If the collision is perfectly inelastic, find the speed of the objects after the collision. a) 0.25 m/s b) 0.5 m/s c) 0.75 m/s d) 1 m/s 29

6. Object 1 moves toward Object 2, whose mass is twice that of Object 1 and which is initially at rest. After their impact, the objects stick together and move with what fraction of Object 1 s initial kinetic energy? a) 1/18 b) 1/9 c) 1/6 d) 1/3 7. Two objects move toward each other, collide, and separate. If there was no external force acting on the objects, but some kinetic energy was lost, then a) the collision was elastic and total linear momentum was conserved. b) the collision was elastic and total linear momentum was not conserved. c) the collision was not elastic and total linear momentum was conserved. d) the collision was not elastic and total linear momentum was not conserved. 8. A wooden block of mass M is moving at speed V in a straight line. How fast would a bullet of mass m need to travel to stop the block (assuming that the bullet became embedded inside)? a) mv/(m + M) b) mv/m c) MV/M) d) V(m + M)/m 9. Which of the following best describes a perfectly inelastic collision free of external forces? a) Total linear momentum is never conserved. b) Total linear momentum is sometimes conserved. c) Kinetic energy is never conserved. d) Kinetic energy is always conserved. 30

AP Physics 1 Unit 8 Review - Momentum, Impulse, Collisions Late or Points: / 16-2 -4-6 Incomplete Fee: Solve these problems here, THEN enter your responses in the bubble sheet provided. Each question is worth two points. 1. The linear momentum of a runner in a 100- m dash is 7.50 E 2 kg m/s. If the runner s speed is 10.0 m/s, what is his mass? A) 55.0 kg B) 65.0 kg C) 75.0 kg D) 80.0 kg E) 85.0 kg Correction Credit: Final Score: 2. What is the momentum of a 7.1-kg bowling ball traveling at 12 m/s? A) 1.69 kg m/s B) 55.9 kg m/s C) 85.2 kg m/s D) 94.2 kg m/s E) 98.1 kg m/s 3. A stationary 8.20-kg object receives an impulse of 14.2 N s. With what horizontal speed will it move away from the impulse generating object? A) 2.50 m/s B) 1.73 m/s C) 1.44 m/s D) 2.13 m/s E) 2.35 m/s 4. On frictionless ice, a 75-kg skater pushes his 45-kg female partner. Her velocity after the push is 1.5 m/s. What is the man s velocity? A) 0.90 m/s B) 0.75 m/s C) 1.2 m/s D) 1.1 m/s E) 2.4 m/s 5. A 12.5 m/s, 50.0 kg wrecking ball hits another, smaller stationary one (35.0 kg). How fast will the smaller wrecking ball go as a result of the interaction? Assume an elastic collision. A) 0.0 m/s B) 17.9 m/s C) 12.5 m/s D)15.2 m/s E) 14.7 m/s 31

6. Two cars collide and stick together in an intersection. The first car has a mass of 2300 kg and initially was traveling at 14.5 m/s. If the second car was at rest and had a mass of 1800 kg, how fast are both cars moving immediately after the collision? A) 7.3 m/s B) 6.4m/s C) 9.6 m/s D) 8.1 m/s E) 10.7m/s 7. Two masses have masses of 13.2 kg and 4.80 kg, and are connected 4.5 meters apart from each other. How many meters from the first (13.2-kg) mass is the center of mass? A) 0.9 m B) 1.2 m C) 1.8 m D) 3.3 m E) 2.3 m 8. Find the x-y coordinates for the center of mass for this threebody system: A) (1.2, 2.5) B) (2.8, 2.3) C) (2.3, 3.0) D) (2.3, 2.3) E) (2.3, 1.2) 32