PHYA4/2. General Certificate of Education Advanced Level Examination June Unit 4 Fields and Further Mechanics Section B

Similar documents
PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014

PHYA4/2. (JUN15PHYA4201) WMP/Jun15/PHYA4/2/E3 PMT. General Certificate of Education Advanced Level Examination June 2015

PHYA4/2. (JAN12PHYA4201) WMP/Jan12/PHYA4/2. General Certificate of Education Advanced Level Examination January 2012

PHYA4/2. (JUN13PHYA4201) WMP/Jun13/PHYA4/2. General Certificate of Education Advanced Level Examination June 2013

PHYA4/2. General Certificate of Education Advanced Level Examination January Unit 4 Fields and Further Mechanics Section B

PHYA1. (JUN13PHYA101) WMP/Jun13/PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2013

PHYA2 (JAN09PHYA201) General Certificate of Education Advanced Subsidiary Examination January Unit 2 Mechanics, Materials and Waves

PHYA4/2. General Certificate of Education Advanced Level Examination June Unit 4 Fields and Further Mechanics Section B

PHYA1. (JUN15PHYA101) WMP/Jun15/PHYA1/E4. General Certificate of Education Advanced Subsidiary Examination June 2015

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. (JUN13PHYA201) WMP/Jun13/PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves

PHYA2 (JAN09PHYA201) General Certificate of Education Advanced Subsidiary Examination January Unit 2 Mechanics, Materials and Waves

Physics (Specification A)

ERRATUM NOTICE ERRATUM NOTICE

PHYA5/2D. General Certificate of Education Advanced Level Examination June Unit 5D Turning Points in Physics Section B

PHYA4/2. (JAN13PHYA4201) WMP/Jan13/PHYA4/2. General Certificate of Education Advanced Level Examination January 2013

PHYA5/1. General Certificate of Education Advanced Level Examination June 2010

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity

PA04/2 (JAN09PA0401. General Certifi cate of Education January 2009 Advanced Level Examination

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves. (JUN11PHYA201) WMP/Jun11/PHYA2 PMT

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

A-level PHYSICS A PHYA4/2. Unit 4 Fields and Further Mechanics. Section B. Monday 20 June 2016 Morning

PHYA5/2C. (JUN14PHYA52C01) WMP/Jun14/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B

PHYA5/2D. General Certificate of Education Advanced Level Examination June Unit 5D Turning Points in Physics Section B

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves. (JAN13PHYA201) WMP/Jan13/PHYA2

Physics (B): Physics in Context

Physics (B): Physics in Context

Physics (Specification A)

PHYA5/1. General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

Candidate Number. General Certificate of Education Advanced Level Examination June 2015

Physics (B): Physics in Context

PHYA1. General Certificate of Education Advanced Subsidiary Examination January Particles, Quantum Phenomena and Electricity

Physics in Context (B)

PA04/2 (JUN08PA0401) General CertiÞ cate of Education June 2008 Advanced Level Examination

PHYA5/2C. General Certificate of Education Advanced Level Examination June Section B. Monday 27 June am to 10.45am (JUN11PHYA52C01) PMT

PA04/2. PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy. Section B

AS PHYSICS A PHYA1. Unit 1 Particles, Quantum Phenomena and Electricity. Morning. (JUN16PHYA101) WMP/Jun16/E4. Materials. Instructions.

PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B (JUN10PHYA52A01) PMT TOTAL

PHYA5/2B. General Certificate of Education Advanced Level Examination June Unit 5B Medical Physics Section B

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity (JUN10PHAY101 TOTAL

PHYA1. (JUN14PHYA101) WMP/Jun14/PHYA1/E5. General Certificate of Education Advanced Subsidiary Examination June 2014

Physics (B): Physics in Context

PA04/2 (JUN09PA04201) General CertiÞ cate of Education June 2009 Advanced Level Examination

PHYA5/2C. General Certificate of Education Advanced Level Examination June Unit 5C Applied Physics Section B

Specimen Paper. Physics. AQA Level 1/2 Certificate in Physics Specimen Paper. Paper 2 TOTAL. Time allowed 1 hour 30 minutes

PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL

PMT. GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Approved specimen question paper. Version 1.

A-level PHYSICS A PHYA5/2A. Unit 5A Astrophysics. Section B. Tuesday 28 June 2016

Additional Science. Physics PH2FP. (Jun15PH2FP01) General Certificate of Secondary Education Foundation Tier June 2015.

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Physics (B): Physics in Context PHYB1

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

PHB4. PHYSICS (SPECIFICATION B) Unit 4 Further Physics. General Certificate of Education June 2004 Advanced Level Examination

Mathematics (JUN14MM0501) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL.

PHYA1 (JUN09PHYA101) General Certificate of Education Advanced Subsidiary Examination June Unit 1 Particles, Quantum Phenomena and Electricity

Mathematics (JUN13MM2B01) General Certificate of Education Advanced Level Examination June Unit Mechanics 2B TOTAL

PHYA5/2A. (JUN13PHYA52A01) WMP/Jun13/PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B

PA02 ((JUN08PA0201)) General CertiÞ cate of Education June 2008 Advanced Subsidiary Examination

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

PHY6T/P10/test. General Certificate of Education Advanced Level Examination June Investigative and Practical Skills in A2 Physics

PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Additional Science. Physics PHY2H (JAN10PHY2H01) General Certificate of Secondary Education Higher Tier January Unit Physics P2.

Additional Science M (modular) MPH2HP. Physics M (modular) MPH2HP. (Jan14MPH2Hp01) General Certificate of Secondary Education Higher Tier January 2014

PHYA5/2AR (JUN15PHYA52AR01) General Certificate of Education Advanced Level Examination June Section B PMT TOTAL.

PHYA5/1R (JUN15PHYA51R01) General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

Additional Science PHY2F Unit Physics P2 Physics Unit Physics P2 Written Paper Wednesday 30 May pm to 2.15 pm

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes.

PHYSICS (SPECIFICATION A) PA10

A-level PHYSICS A PHYA5/2A. Unit 5A Astrophysics. Section B. Wednesday 21 June 2017

Mathematics (JUN12MM2B01) General Certificate of Education Advanced Level Examination June Unit Mechanics 2B TOTAL

Physics Unit 3 Investigative and Practical Skills in AS Physics PHY3T/Q09/test

PHYA5/2C. (JUN15PHYA52C01) WMP/Jun15/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B PMT TOTAL

PHYA5/2B (JUN15PHYA52B01) General Certificate of Education Advanced Level Examination June Unit 5B Medical Physics Section B

PHYA5/2A. General Certificate of Education Advanced Level Examination June Unit 5A Astrophysics Section B. (JUN11PHYA52A01) WMP/Jun11/PHYA5/2A

PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Physics Unit 3 Investigative and Practical Skills in AS Physics PHY3T/P09/test

PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids

AS PHYSICS 7407/1. Paper 1. Tuesday 24 May 2016 Morning Time allowed: 1 hour 30 minutes *JUN *

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5D: Approved specimen question paper. Version 1.1

Physics A Unit 5A Astrophysics Section B PHYA5/2A

AS PHYSICS 7407/1. Surname. Other Names. Centre Number. Candidate Number. Candidate Signature. Paper 1

Additional Science. Physics PH2HP. (Jun14PH2HP01) General Certificate of Secondary Education Higher Tier June Unit Physics P2.

Mathematics MM1B (JUN15MM1B01) General Certificate of Education Advanced Subsidiary Examination June Unit Mechanics 1B TOTAL

GCSE ADDITIONAL SCIENCE PHYSICS

GCSE PHYSICS. Please write clearly in block capitals. Surname. Forename(s) Candidate signature

Surname Other Names Centre Number Candidate Number Candidate Signature. General Certificate of Secondary Education Higher Tier June 2014

Physics (B): Physics in Context

Additional Science Unit Physics P2. Physics Unit Physics P2 PH2FP. (JUn12PH2Fp01) General Certificate of Secondary Education Foundation Tier June 2012

Additional Science Unit Physics P2. Physics Unit Physics P2 PHY2H. (Jan12PHY2H01) General Certificate of Secondary Education Higher Tier January 2012

Additional Science. Physics PH2HP. (Jun15PH2HP01) General Certificate of Secondary Education Higher Tier June Unit Physics P2.

PA01. PHYSICS (SPECIFICATION A) Unit 1 Particles, Radiation and Quantum Phenomena

Additional Science Unit Physics P2. Physics Unit Physics P2 PHY2F. (Jan12PHY2F01)

AS MATHEMATICS. Paper 1 PRACTICE PAPER SET 1

PHY6T/Q10/test. General Certificate of Education Advanced Level Examination June Investigative and Practical Skills in A2 Physics

Transcription:

Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 4 Fields and Further Mechanics Section B General Certificate of Education Advanced Level Examination June 2011 Tuesday 21 June 2011 9.00 am to 10.45 am PHYA4/2 Question 1 2 3 4 5 TOTAL Mark For this paper you must have: a calculator a ruler a Data and Formulae Booklet. Time allowed The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately one hour on this section Instructions Use black ink or black ball-point pen. Fill in the es at the top of this page. Answer all questions. You must answer the questions in the space provided. Answers written in margins or on blank pages will not be marked. Do all rough work in this book. Cross through any work you do not want to be marked Information The marks for questions are shown in brackets. The maximum mark for this paper is 50. You are expected to use a calculator where appropriate. A Data and Formulae Booklet is provided as a loose insert. You will be marked on your ability to: use good English organise information clearly use specialist vocabulary where appropriate. (JUN11PHYA4201) PHYA4/2

2 Answer all questions You are advised to spend approximately one hour on this section 1 Figure 1 shows a parcel on the floor of a delivery van that is passing over a hump-backed bridge on a straight section of road. The radius of curvature of the path of the parcel is r and the van is travelling at a constant speed v. The mass of the parcel is m. Figure 1 parcel Figure 1 van path of parcel r centre of curvature 1 (a) (i) Draw arrows on Figure 2 below to show the forces that act on the parcel as it passes over the highest point of the bridge. Label these forces. Figure 2 parcel floor of the van 1 (a) (ii) Write down an equation that relates the contact force, R, between the parcel and the floor of the van to m, v, r and the gravitational field strength, g. (02)

3 1 (a) (iii) Calculate R if m = 12 kg, r = 23 m, and v = 11 m s 1. answer =...N 1 (b) Explain what would happen to the magnitude of R if the van passed over the bridge at a higher speed. What would be the significance of any van speed greater than 15 m s 1? Support your answer with a calculation. (3 marks) 7 Turn over (03)

4 2 A trolley of mass 0.80 kg rests on a horizontal surface attached to two identical stretched springs, as shown in Figure 3. Each spring has a spring constant of 30 N m 1, can be assumed to obey Hooke s law, and to remain in tension as the trolley moves. Figure 3 fixed spring trolley spring fixed 2 (a) (i) The trolley is displaced to the left by 60 mm and then released. Show that the magnitude of the resultant force on it at the moment of release is 3.6 N. 2 (a) (ii) Calculate the acceleration of the trolley at the moment of release and state its direction. answer =...m s 2 direction... (04)

5 2 (b) (i) The oscillating trolley performs simple harmonic motion. State the two conditions which have to be satisfied to show that a body performs simple harmonic motion. 2 (b) (ii) The frequency f of oscillation of the trolley is given by f = 1 2π 2k m where m = mass of the trolley k = spring constant of one spring. Calculate the period of oscillation of the trolley, stating an appropriate unit. answer =... (3 marks) Turn over (05)

6 2 (c) Copper ions in a crystal lattice vibrate in a similar way to the trolley, because the inter-atomic forces act in a similar way to the forces exerted by the springs. Figure 4 shows how this model of a vibrating ion can be represented. Figure 4 copper ion fixed spring spring fixed 2 (c) (i) The spring constant of each inter-atomic spring is about 200 N m 1. The mass of the copper ion is 1.0 10 25 kg. Show that the frequency of vibration of the copper ion is about 10 13 Hz. 2 (c) (ii) If the amplitude of vibration of the copper ion is 10 11 m, estimate its maximum speed. 2 (c) (iii) Estimate the maximum kinetic energy of the copper ion. answer =...m s 1 answer =...J 12 (06)

7 3 Capacitors and rechargeable batteries are examples of electrical devices that can be used repeatedly to store energy. 3 (a) (i) A capacitor of capacitance 70 F is used to provide the emergency back-up in a low voltage power supply. Calculate the energy stored by this capacitor when fully charged to its maximum operating voltage of 1.2 V. Express your answer to an appropriate number of significant figures. answer =...J (3 marks) 3 (a) (ii) A rechargeable 1.2 V cell used in a cordless telephone can supply a steady current of 55 ma for 10 hours. Show that this cell, when fully charged, stores almost 50 times more energy than the capacitor in part (a)(i). 3 (b) Give two reasons why a capacitor is not a suitable source for powering a cordless telephone. Reason 1... Reason 2... 7 Turn over (07)

8 4 (a) The equation F = BQv may be used to calculate magnetic forces. 4 (a) (i) State the condition under which this equation applies. 4 (a) (ii) Identify the physical quantities that are represented by the four symbols in the equation. F... B... Q... v... 4 (b) Figure 5 shows the path followed by a stream of identical positively-charged ions, of the same kinetic energy, as they pass through the region between two charged plates. Initially the ions are travelling horizontally and they are then deflected downwards by the electric field between the plates. Figure 5 positive ion + d horizontal path of ions Whilst the electric field is still applied, the path of the ions may be restored to the horizontal, so that they have no overall deflection, by applying a magnetic field over the same region as the electric field. The magnetic field must be of suitable strength and has to be applied in a particular direction. 4 (b) (i) State the direction in which the magnetic field should be applied. (08)

9 4 (b) (ii) Explain why the ions have no overall deflection when a magnetic field of the required strength has been applied. 4 (b) (iii) A stream of ions passes between the plates at a velocity of 1.7 x 10 5 ms 1. The separation d of the plates is 65 mm and the pd across them is 48 V. Calculate the value of B required so that there is no overall deflection of the ions, stating an appropriate unit. answer =... (4 marks) 4 (c) Explain what would happen to ions with a velocity higher than 1.7 x 10 5 ms 1 when they pass between the plates at a time when the conditions in part (b)(iii) have been established. 11 Turn over (09)

10 5 (a) Long cables are used to send electrical power from a supply point to a factory some distance away, as shown in Figure 6. An input power of 500 kw at 25 kv is supplied to the cables. Figure 6 supply point 25 kv long cables factory 5 (a) (i) Calculate the current in the cables. answer =...A 5 (a) (ii) The total resistance of the cables is 30 Ω. Calculate the power supplied to the factory by the cables. answer =...kw 5 (a) (iii) Calculate the efficiency with which power is transmitted by the cables from the input at the supply point to the factory. answer =...% (10)

11 5 (b) In Great Britain, the electrical generators at power stations provide an output at 25 kv. Most homes, offices and shops are supplied with electricity at 230 V. Power is transmitted from the power stations to the consumers by the grid system, the main principles of which are shown in Figure 7. In this network, T 1, T 2, T 3, etc, are transformers. Figure 7 power station long distance grid lines to homes, offices, etc. 25 kv T 1 400 kv T 2 132 kv T 3 33 kv T 4 11 kv T 5 230 V 5 (b) (i) Explain how a step-down transformer differs in construction from a step-up transformer. 5 (b) (ii) Explain why the secondary windings of a step-down transformer should be made from thicker copper wire than the primary windings. Question 5 continues on the next page Turn over (11)

12 5 (c) Discuss the principles involved in high voltage transmission systems, explaining why a.c. is used in preference to d.c. and how the energy losses are minimised. The quality of your written communication will be assessed in this question. (6 marks) 13 END OF QUESTIONS Copyright 2011 AQA and its licensors. All rights reserved. (12)