Lepton Flavor Violation

Similar documents
12 Best Reasons to Like CP Violation

Antonio Pich. IFIC, CSIC Univ. Valencia.

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

S 3 Symmetry as the Origin of CKM Matrix

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Beyond Standard Model Effects in Flavour Physics: p.1

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

CP Violation: A New Era

arxiv: v1 [hep-ph] 16 Mar 2017

Theory of CP Violation

Electroweak Theory: 5

Introduction to the SM (5)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Updated S 3 Model of Quarks

Why Super-B? Zoltan Ligeti. P5 Meeting, Feb , SLAC. Flavor as a probe of new physics. Sizable NP contributions possible. Some key processes

Aspetti della fisica oltre il Modello Standard all LHC

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

Current knowledge tells us that matter is made of fundamental particle called fermions,

Leptogenesis with Composite Neutrinos

Phenomenology of low-energy flavour models: rare processes and dark matter

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Neutrino Mass Models

The Flavour Portal to Dark Matter

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

Electroweak physics and the LHC an introduction to the Standard Model

Dipole operator constraints on composite Higgs models

Automatic CP Invariance and Flavor Symmetry

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Introduction to flavour physics

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Yang-Hwan, Ahn (KIAS)

Electroweak Theory: 3

Electroweak Theory: 2

Lecture 18 - Beyond the Standard Model

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

CP Violation Beyond the Standard Model

Shahram Rahatlou University of Rome

Adding families: GIM mechanism and CKM matrix

Minimal Lepton Flavor Violation

B Physics: Theoretical Aspects Anirban Kundu

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Gauged Flavor Symmetries

Unitary Triangle Analysis: Past, Present, Future

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Lecture 12 Weak Decays of Hadrons

Lepton-flavor violation in tau-lepton decay and the related topics

Yang-Hwan, Ahn (KIAS)

Fundamental Symmetries - 2

Elementary Particles, Flavour Physics and all that...

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Going beyond the Standard Model with Flavour

Duality in left-right symmetric seesaw

Low Energy Precision Tests of Supersymmetry

Flavour Physics Lecture 1

Standard Model & Beyond

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Lecture 11. Weak interactions

Two-Higgs-Doublet Model

Flavour physics Lecture 1

A novel and economical explanation for SM fermion masses and mixings

Baryon and Lepton Number Violation at the TeV Scale

Low Scale Flavor Gauge Symmetries

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

arxiv: v1 [hep-ph] 30 Jun 2014

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Extra-d geometry might also explain flavor

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Models of Neutrino Masses

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Lepton Flavor and CPV

CP VIOLATION. Thomas Mannel. Theoretical Physics I, Siegen University. Les nabis School 2011

Two models with extra Higgs doublets and Axions

Quark flavour physics

Recent topics in heavy-quark flavour physics

RG evolution of neutrino parameters

The simplest Extension of the Standard Model

La Fisica dei Sapori Pesanti

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Leptogenesis with type II see-saw in SO(10)

Steve King, DCPIHEP, Colima

SUSY models of neutrino masses and mixings: the left-right connection

Neutrino Oscillations And Sterile Neutrinos

The Standard Model and beyond

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Flavor, Higgs couplings and DM within September multi-higgs 5, 2016models1 / 48

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Weak Interactions: towards the Standard Model of Physics

Transcription:

Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39

Lepton Flavor Violation Plan of Lectures 1. The (extended) Standard Model flavor puzzle Introduction The Standard Model The extended Standard Model 2. The New Physics flavor puzzle 3. Leptogenesis LFV 2/39

LFV Introduction LFV 3/39

Introduction What are flavors? Copies of the same gauge representation: SU(3) C U(1) EM Up-type quarks (3) +2/3 u, c, t Down-type quarks (3) 1/3 d, s, b Charged leptons (1) 1 e, µ, τ Neutrinos (1) 0 ν 1, ν 2, ν 3 LFV 4/39

Introduction What are flavors? In the interaction basis: SU(3) C SU(2) L U(1) Y Quark doublets (3, 2) +1/6 Q Li Up-type quark singlets (3, 1) +2/3 U Ri Down-type quark singlets (3, 1) 1/3 D Ri Lepton doublets (1, 2) 1/2 L Li Charged lepton singlets (1, 1) 1 E Ri In QCD: SU(3) C Quarks (3) u, d, s, c, b, t LFV 5/39

Introduction What is flavor physics? Interactions that distinguish among the generations: Neither strong nor electromagnetic interactions Within the SM: Only weak and Yukawa interactions In the interaction basis: The weak interactions are also flavor-universal The source of all SM flavor physics: Yukawa interactions among the gauge interaction eigenstates Flavor parameters: Parameters with flavor index (m i, V ij ) LFV 6/39

Introduction More flavor dictionary Flavor universal: Coupling/paremeters 1 ij in flavor space Example: strong interactions U R G µa λ a γ µ 1U R Flavor diagonal: Coupling/paremeters that are diagonal in flavor space Example: SM Yukawa interactions in mass basis U L λ u U R H, λ u = diag(y u, y c, y t ) LFV 7/39

Introduction And more flavor dictionary Flavor changing: Initial flavor number final flavor number Flavor number = # particles # antiparticles B ψk ( b cc s); K µ ν 2 (sū µ ν 2 ) Flavor changing neutral current processes: Flavor changing processes that involve either U or D but not both and/or either l or ν but not both µ eγ; K πν ν (s dν ν); D 0 D 0 mixing (cū u c)... FCNC are highly suppressed in the SM LFV 8/39

Introduction Why is flavor physics interesting? Flavor physics is sensitive to new physics at Λ NP E experiment The Standard Model flavor puzzle: Why are the flavor parameters small and hierarchical? (Why) are the neutrino flavor parameters different? The New Physics flavor puzzle: If there is NP at the TeV scale, why are FCNC so small? LFV provides theoretically clean null tests of the SM LFV could be present even in MFV models δ KM cannot explain the baryon asymmetry a puzzle: There must exist new sources of CPV Electroweak baryogenesis? (Testable at the LHC) Leptogenesis? (Window to Λ seesaw ) LFV 9/39

Introduction A brief history of FV Γ(K µµ) Γ(K µν) = Charm [GIM, 1970] m K = m c 1.5 GeV [Gaillard-Lee, 1974] ε K 0 = Third generation [KM, 1973] m B = m t m W [Various, 1986] LFV 10/39

Introduction A brief history of FV Γ(K µµ) Γ(K µν) = Charm [GIM, 1970] m K = m c 1.5 GeV [Gaillard-Lee, 1974] ε K 0 = Third generation [KM, 1973] m B = m t m W [Various, 1986]...and hopes for the future history: Γ(µ eγ) 0 =??? d e 0 =??? m2 µẽ 0 =??? LFV 10/39

Lepton Flavor Violation The Standard Model LFV 11/39

The Standard Model The Standard Model G SM = SU(3) C SU(2) L U(1) Y φ(1, 2) +1/2 0 breaks G SM SU(3) C U(1) EM Quarks: 3 { Q L (3, 2) +1/6 + U R (3, 1) +2/3 + D R (3, 1) 1/3 } Leptons: 3 { L L (1, 2) 1/2 + E R (1, 1) 1 } L SM = L kinetic+gauge + L Higgs + L Yukawa L SM depends on 18 parameters All but one (m H ) have been measured LFV 12/39

The Standard Model Flavor Symmetry L kinetic+gauge + L Higgs has a large global symmetry: G global = U(3) Q U(3) U U(3) D U(3) L U(3) E Q L V Q Q L, U R V U U R, D R V D D R, L L V L L L, E R V E E R Take, for example L kinetic+gauge for Q L (3, 2) +1/6 : iq L i( µ + i 2 g sg a µλ a + i 2 g sw b µτ b + i 6 g B µ )γ µ δ ij Q Lj Q L 1Q L Q L V Q 1V QQ L = Q L 1Q L Another example: L kinetic+gauge for L L (1, 2) 1/2 : il L i( µ + i 2 g sw b µτ b i 2 g B µ )γ µ δ ij L Lj L L 1L L L L V L 1V LL L = L L 1L L LFV 13/39

The Standard Model Flavor Violation L Yukawa = Q L iy u ij φu Rj + Q L iy d ij φd Rj + L L iy e ij φe Rj breaks G global U(1) B U(1) e U(1) µ U(1) τ Flavor physics: interactions that break the [SU(3)] 5 symmetry Q L V Q Q L, U R V U U R, D R V D D R L L V L L L, E R V E E R = Change of interaction basis Y d V Q Y d V D, Y u V Q Y u V U, Y e V L Y e V E Can be used to reduce the number of parameters in Y u, Y d, Y e LFV 14/39

The Standard Model The quark flavor parameters Convenient (but not unique) interaction basis: Y d V Q Y d V D = λd, Y u V Q Y u V U = V λ u λ d, λ u diagonal and real: λ d = y d y s y b ; λu = y u y c y t V unitary with 3 real (λ, A, ρ) and 1 imaginary (η) parameters: 1 λ Aλ 3 (ρ + iη) V λ 1 Aλ 2 Aλ 3 (1 ρ + iη) Aλ 2 1 Another convenient basis: Y d V λ d, Y u λ u LFV 15/39

The Standard Model Kobayashi and Maskawa CP violation Complex couplings: Hermiticity: L g ijk φ i φ j φ k + g ijk φ i φ j φ k CP transformation: φ i φ j φ k φ i φ j φ k CP is a good symmetry if g ijk = g ijk The number of real and imaginary quark flavor parameters: With two generations: 2 (4 R + 4 I ) 3 (1 R + 3 I ) + 1 I = 5 R + 0 I With three generations: 2 (9 R + 9 I ) 3 (3 R + 6 I ) + 1 I = 9 R + 1 I The two generation SM is CP conserving The three generation SM is CP violating LFV 16/39

The Standard Model The mass basis To transform to the mass basis: D L D L, U L V U L m q = y q φ V = The CKM matrix L W = g 2 U L V γ µ D L W + µ + h.c. V = V ud V us V ub V cd V cs V cb V td V ts V tb η - the only source of CP violation LFV 17/39

The Standard Model The lepton flavor parameters Convenient interaction basis: Y e V L Y e V E = λe λ e diagonal and real [SU(3) L SU(3) E U(1) e U(1) µ U(1) τ ]: λ e = y e y µ y τ The number of real and imaginary lepton flavor parameters: With three generations: 1 (9 R + 9 I ) 2 (3 R + 6 I ) + 3 I = 3 R + 0 I The mass basis: m l = y l φ The lepton sector of the SM: neither mixing nor CP violation LFV 18/39

Lepton Flavor Violation The SM Flavor Puzzle LFV 19/39

The SM flavor puzzle Smallness and Hierarchy y t 1, y c 10 2, y u 10 5 y b 10 2, y s 10 3, y d 10 4 y τ 10 2, y µ 10 3, y e 10 6 V us 0.2, V cb 0.04, V ub 0.004, δ KM 1 For comparison: g s 1, g 0.6, g 0.3, λ 1 The SM flavor parameters have structure: smallness and hierarchy Why? = The SM flavor puzzle LFV 20/39

The SM flavor puzzle The Froggatt-Nielsen (FN) mechanism Approximate horizontal symmetry (e.g. U(1) H ) Small breaking parameter ɛ = S 1 /Λ 1 Each quark or lepton field carries an FN charge H(ψ) Selection rules: Y d ij ɛh(q i)+h( d j )+H(φ d ) Y u ij ɛh(q i)+h(ū j )+H(φ u ) Y e ij ɛh(l i)+h( l j )+H(φ d ) LFV 21/39

The SM flavor puzzle The FN mechanism: An example H(Q i ) = 2, 1, 0, H(ū j ) = 2, 1, 0, H(φ u ) = 0 y t : y c : y u 1 : ɛ 2 : ɛ 4 Y u ɛ 4 ɛ 3 ɛ 2 ɛ 3 ɛ 2 ɛ ɛ 2 ɛ 1 (V u L ) 12 ɛ, (V u L ) 23 ɛ, (V u L ) 13 ɛ 2 LFV 22/39

The SM flavor puzzle The FN mechanism: a viable model Approximate horizontal symmetry (e.g. U(1) H ) Small breaking parameter ɛ = S 1 /Λ 1 10(2, 1, 0), 5(0, 0, 0) y t : y c : y u 1 : ɛ 2 : ɛ 4 y b : y s : y d 1 : ɛ : ɛ 2 y τ : y µ : y e 1 : ɛ : ɛ 2 V us V cb ɛ, V ub ɛ 2, δ KM 1 LFV 23/39

The SM flavor puzzle The FN mechanism: Predictions (quarks) In the quark sector: 8 FN charges, 9 observables One prediction that is independent of charge assignments: V ub V us V cb Experimentally correct to within a factor of 2 In addition, six inequalities: V us > m d m s, m u m c ; V ub > m d m b, m u Experimentally fulfilled m t ; V cb > m s m b, m c m t When ordering the quarks by mass: V CKM 1 (diagonal terms not suppressed parameterically) Experimentally fulfilled LFV 24/39

Lepton Flavor Violation The Extended Standard Model LFV 25/39

The Extended Standard Model Neutrino Masses experimentally m 2 21 = (7.6 ± 0.2) 10 5 ev 2 m 2 32 = (2.4 ± 0.1) 10 3 ev 2 sin 2 2θ 12 = 0.87 ± 0.03 sin 2 2θ 23 > 0.92 LFV 26/39

The Extended Standard Model Neutrino Masses theoretically The only neutrino mass terms that can be written with the SM particle content: L Mν = 1 2 3 k=1 m k(ν c k ν k + h.c.) L Mν violates B L = Forbidden Within the SM, neutrino masses vanish to all orders in perturbation theory and even non-perturbatively The SM must be extended LFV 27/39

The Extended Standard Model The Extended Standard Model The SM: G SM = SU(3) C SU(2) L U(1) Y φ(1, 2) +1/2 0 breaks G SM SU(3) C U(1) EM Quarks: 3 { Q L (3, 2) +1/6 + U R (3, 1) +2/3 + D R (3, 1) 1/3 } Leptons: 3 { L L (1, 2) 1/2 + E R (1, 1) 1 } The ESM: It is possible to extend the SM while maintaining the symmetry, the pattern of SSB, and the particle content, by giving up on renormalizability The SM = Low energy effective theory Not valid above a certain mass scale LFV 28/39

The Extended Standard Model The ESM Lagrangian L ESM = L SM + L d=5 L d=5 = Zν ij Λ L il j φφ + h.c. L Mν = Zν ij 2 (M ν ) ij = Z ν ij v 2 Λ ν iν c j + h.c. v 2 Λ LFV 29/39

The Extended Standard Model Flavor Violation L kinetic+gauge + L Higgs has a large global symmetry: G global = [U(3)] 5 L Yukawa + L d=5 break G global U(1) B Q L V Q Q L, U R V U U R, D R V D D R L L V L L L, E R V E E R = Change of interaction basis Y d V Q Y d V D, Y u V Q Y u V U, Y e V L Y e V E, Zν V L Z ν V T L Can be used to reduce the number of parameters in Y u, Y d, Y e, Z ν LFV 30/39

The Standard Model The lepton flavor parameters (9 R + 9 I ) + (6 R + 6 I ) 2 (3 R + 6 I ) = 9 R + 3 I Convenient (but not unique) interaction basis: Y e λ e, Z ν U λ ν U vλ e = diag(m e, m µ, m τ ) (v 2 /Λ)λ ν = diag(m 1, m 2, m 3 ) U = the leptonic mixing matrix: L l W ± = g 2 E Li γ µ U ij ν Lj W µ + h.c. with 3 real and 3 imaginary parameters The lepton sector of the ESM: mixing and CP violation LFV 31/39

Lepton Flavor Violation The ESM Flavor Puzzle LFV 32/39

The ESM flavor puzzle The Froggatt-Nielsen (FN) mechanism Approximate horizontal symmetry (e.g. U(1) H ) Small breaking parameter ɛ = S 1 /Λ 1 Each quark and lepton field carries an FN charge H(φ) Selection rules: Y d ij ɛh(q i)+h( d j )+H(φ d ) Y u ij ɛh(q i)+h(ū j )+H(φ u ) Y e ij ɛh(l i)+h( l j )+H(φ d ) Z ν ij ɛh(l i)+h(l j )+2H(φ u ) LFV 33/39

The ESM flavor puzzle The FN mechanism: Predictions (leptons) In the lepton sector: 5 FN charges, 9 observables Four predictions that are independent of charge assignments: m νi /m νj U ij 2 U e3 U e2 U µ3 In addition, three inequalities: U e2 > m e m µ ; U e3 > m e m τ ; U µ3 > m µ m τ When ordering the leptons by mass: U 1 LFV 34/39

The ESM flavor puzzle Testing FN with Neutrinos The data: m 2 21/ m 2 32 = 0.030 ± 0.003 sin θ 12 = 0.57 ± 0.02, sin θ 23 = 0.67 0.04 +0.07, sin θ 13 = 0 +0.07 0.0 The tests: s 23 1, m 2 /m 3 ɛ x? Inconsistent with FN s 23 1, s 12 1, s 13 ɛ x? Inconsistent with FN sin 2 2θ 23 = 1 ɛ x? Inconsistent with FN LFV 35/39

The SM flavor puzzle Neutrino Mass Anarchy Facts: sin θ 23 0.7 > any V ij sin θ 12 0.6 > any V ij m 2 /m 3 > 1/6 > any m i /m j for charged fermions sin θ 13 0.1 is still possible Possible interpretation: Neutrino parameters are all of O(1) (no structure): Neutrino mass anarchy Consistent with FN Close to SU(5)-GUT+FN predictions: s 23 m s/m b V cb 1; s 12 m d/m s V us 0.2; s 13 m d/m b V ub 0.5 LFV 36/39

The ESM flavor puzzle The FN mechanism: a viable model Approximate horizontal symmetry (e.g. U(1) H ) Small breaking parameter ɛ = S 1 /Λ 1 10(2, 1, 0), 5(0, 0, 0) y t : y c : y u 1 : ɛ 2 : ɛ 4 y b : y s : y d 1 : ɛ : ɛ 2 y τ : y µ : y e 1 : ɛ : ɛ 2 V us V cb ɛ, V ub ɛ 2, δ KM 1 + m 3 : m 2 : m 1 1 : 1 : 1 U e2 1, U µ3 1, U e3 1 LFV 37/39

The ESM flavor puzzle Structure is in the eye of the beholder 0.79 0.86 0.50 0.61 0.0 0.2 U 3σ = 0.25 0.53 0.47 0.73 0.56 0.79 0.21 0.51 0.42 0.69 0.61 0.83 Tribimaximal-ists: 2/3 1/3 0 U T BM = 1/6 1/3 1/2 1/6 1/3 1/2 Anarch-ists: U anarchy = O(0.6) O(0.6) O(0.6) O(0.6) O(0.6) O(0.6) O(0.6) O(0.6) O(0.6) LFV 38/39

The ESM flavor puzzle The (E)SM flavor confusion The charged fermion flavor parameters: smallness and hierarchy Possibly a hint for NP: approximate symmetry, dynamics... Strong hierarchy, small mixing = Abelian symmetry? The three measured neutrino flavor parameters: neither small nor hierarchical Anarchy? Tribimaximal mixing? Neither? No symmetry? Non-Ablian symmetry? U e3 likely to provide further guidance The difference between neutrinos and charged fermions is probably a hint to something deep... LFV 39/39

Thanks to my low-energy-physics collaborators: Gudrun Hiller, YN JHEP 0803 (2008) 046 [arxiv:0802.0916] Gudrun Hiller, Yonit Hochberg, YN JHEP 0903 (2009) 115 [arxiv:0812.0511] JHEP 1003 (2010) 079 [arxiv:1001.1513] Kfir Blum, Yuval Grossman, YN, Gilad Perez Phys. Rev. Lett. 102 (2009) 211802 [arxiv:0903.2118] Yuval Grossman, YN, Gilad Perez Phys. Rev. Lett. 103 (2009) 071602 [arxiv:0904.0305] Oram Gedalia, Yuval Grossman, YN, Gilad Perez Phys. Rev. D80 (2009) 055024 [arxiv:0906.1879] Kfir Blum, Yonit Hochberg, YN arxiv:1007.1872 Helen Quinn + YN The Mystery of the Missing Antimatter (PUP) LFV 40/39