EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Similar documents
EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

EE 330 Class Seating

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

MOS Transistor Theory

Lecture 4: CMOS Transistor Theory

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 5: CMOS Transistor Theory

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

MOSFET: Introduction

EE 434 Lecture 33. Logic Design

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ECE 342 Electronic Circuits. 3. MOS Transistors

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

CMOS Inverter (static view)

Lecture 12: MOSFET Devices

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Chapter 4 Field-Effect Transistors

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

MOS Transistor I-V Characteristics and Parasitics

ECE 546 Lecture 10 MOS Transistors

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Practice 3: Semiconductors

Lecture 3: CMOS Transistor Theory

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

High-to-Low Propagation Delay t PHL

EE 434 Lecture 34. Logic Design

6.012 Electronic Devices and Circuits Spring 2005

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Nanoscale CMOS Design Issues

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

VLSI Design The MOS Transistor

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Chapter 13 Small-Signal Modeling and Linear Amplification

The Devices. Jan M. Rabaey

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

The Devices: MOS Transistors

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Lecture 5: DC & Transient Response

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

University of Toronto. Final Exam

Power Dissipation. Where Does Power Go in CMOS?

EE 560 MOS TRANSISTOR THEORY

Lecture 28 Field-Effect Transistors

EE5311- Digital IC Design

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Biasing the CE Amplifier

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 11: MOSFET Modeling

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

The Devices. Devices

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Integrated Circuits & Systems

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

MOS Transistor Properties Review

Device Models (PN Diode, MOSFET )

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EECS 141: FALL 05 MIDTERM 1

Figure 1: MOSFET symbols.

ECE321 Electronics I

6.012 Electronic Devices and Circuits

ECE-305: Fall 2017 MOS Capacitors and Transistors

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

Lecture 12 Circuits numériques (II)

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

FIELD-EFFECT TRANSISTORS

ECE 546 Lecture 11 MOS Amplifiers

Device Models (PN Diode, MOSFET )

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Transcription:

EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors

Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V ) V V V V V L I =I =0 B OX S T S T DS S T Note: This is the third model we have introduced for the MOSFET (Deep triode special case of triode where V DS is small ) R CH = L W 1 ( VS VT ) µ COX Cutoff Triode Saturation

Review from Last Time raphical Representation of MOS Model I D 3.5 Triode I = μc W V L D OX DS V S4 0 V V S T W V = < L W ( ) L DS I μc V V V V V V V V D OX S T DS S T DS S T μc V V V V V V V OX S T S T DS S T I =I =0 B 1.5 1 Deep Triode RegionRegion Saturation 0.5 V S1 0 0 1 3 4 5 VDS Cutoff V S3 V S V DS

Review from Last Time Model Extensions 300 I D 50 00 150 100 50 V A 1 λ 0 0 1 3 4 5 = V DS Projections intersect V DS axis at same point, termed Early Voltage Typical values from -0V to -00V Usually use parameter λ instead of V A in MOS model

Review from Last Time Further Model Extensions Existing model does not depend upon the bulk voltage! Observe that changing the bulk voltage will change the electric field in the channel region! V DS V S ID V BS I B I E (V BS small) Changing the bulk voltage will change the thickness of the inversion layer Changing the bulk voltage will change the threshold voltage of the device V T ( φ V φ ) = VT0 + γ BS

Review from Last Time Typical Effects of Bulk on Threshold Voltage for n-channel Device V T ( φ V φ ) = VT0 + γ BS 1 γ 0.4V - φ 0.6V V T V T0 ~ -5V V BS Bulk-Diffusion enerally Reverse Biased (V BS < 0 or at least less than 0.3V) for n- channel Shift in threshold voltage with bulk voltage can be substantial Often V BS =0

Review from Last Time Model Extension Summary I I B = 0 = 0 0 V V S T W V = < L W μc ( V V ) ( 1+ λv ) V V V V V L DS I μc V V V V V V V V D OX S T DS S T DS S T V T OX S T DS S T DS S T + γ ( φ V φ ) = VT0 BS Model Parameters : {μ,c OX,V T0,φ,γ,λ} Design Parameters : {W,L} but only one degree of freedom W/L

Operation Regions by Applications Id I D 300 50 00 150 100 50 Triode Region Saturation Region Analog Circuits Cutoff Region 0 0 1 3 4 5 Vds Digital Circuits V DS Most analog circuits operate in the saturation region (basic VVR operates in triode and is an exception) Most digital circuits operate in triode and cutoff regions and switch between these two with Boolean inputs

Output Impedance Model in Saturation Region I D 300 Analog Circuits Id In saturation region 50 00 150 100 50 0 0 1 3 4 5 W I=μC V V L Vds ( ) [ 1+λV ] D OX S T DS W W I=μC V V μc V V L L ( ) + λ ( ) V DS V D OX S T OX S T DS W 1 I =μc ( V V ) + V L R DEQ D OX S T DS 1 R = DEQ W λμc V V L ( ) OX S T

Output Impedance Model in Saturation Region I D 300 Analog Circuits 50 00 Id 150 100 50 In saturation region 0 0 1 3 4 5 D W I=μC V V L Vds ( ) [ 1+λV ] D OX S T DS V DS I D D S S W L V S μc ( V V ) OX S T R DEQ V DS W 1 I =μc ( V V ) + V L R R = 1 1 W λi L D OX S T DS DEQ DEQ λμc ( V V ) OX S T Slope of output characteristics in saturation region gives rise to output resistance DNOM

Model Extension (short devices) 0 V V S T W V = < L W μc ( V V ) V V V V V OX S T S T DS S T L DS I μc V V V V V V V V D OX S T DS S T DS S T As the channel length becomes very short, velocity saturation will occur in the channel and this will occur with electric fields around V/u. So, if a gate length is around 1u, then voltages up to V can be applied without velocity saturation. But, if gate length decreases and voltages are kept high, velocity saturation will occur 0 V V S T θ W I μc V V V V V V V θ L 1 W θμc V V V V V V L α ( ) θ ( V ) α = < D OX S T DS S T DS 1 S T α ( ) θ ( V ) OX S T S T DS 1 S α is the velocity saturation index, α 1 T α

Model Extension (short devices) 0 V V S T θ W I = D μc V V V V V V < V OX S T DS S T DS 1 S θ L 1 W θμc V V V V V V OX S T S T DS 1 S L α ( ) θ ( V ) α α ( ) θ ( V ) α is the velocity saturation index, α 1 T T α No longer a square-law model (some term it an α-power model) For long devices, α= Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well Degrading of α is not an attractive limitation of the MOSFET

Model Extension (BSIM model)

Model Errors with Different W/L Values I D Actual Modeled with one value of L, W Modeled with another value of L, W V S3 V S V S1 V DS Binning models can improve model accuracy

BSIM Binning Model - Bin on device sizes - multiple BSIM models! With 3 bins, this model has 3040 model parameters!

Model Changes with Process Variations (n-ch characteristics shown) I D TT FS or FF (Fast n, slow p or Fast n, fast p ) SS or SF (Slow n, slow p or Slow n, fast p ) V S3 V S V S1 V DS Corner models can improve model accuracy

BSIM Corner Models with Binning - Often 4 corners in addition to nominal TT, FF, FS, SF, and SS - bin on device sizes With 3 size bins and 4 corners, this model has 15,00 model parameters!

How many models of the MOSFET do we have? Switch-level model () Square-law model (with λ and bulk additions) α-law model (with λ and bulk additions) BSIM model (with binning extensions)

Model Status Simple dc Model Square-Law Model Small Signal Better Analytical dc Model Sophisticated Model for Computer Simulations BSIM Model Square-Law Model (with extensions for λ,γ effects) Short-Channel α-law Model Frequency Dependent Small Signal Simpler dc Model Switch-Level Models Ideal switches R SW and C S

In the next few slides, the models we have developed will be listed and reviewed Square-law Model Switch-level Models Extended Square-law model Short-channel model BSIM Model BSIM Binning Model Corner Models

Square-Law Model I D V S4 V S3 V DS V S V S1 0 V V S T W V = < L W ( ) L DS I μc V V V V V V V V D OX S T DS S T DS S T μc V V V V V V V OX S T S T DS S T Model Parameters : {μ,c OX,V T0 } Design Parameters : {W,L} but only one degree of freedom W/L

Switch-Level Models Drain ate D Source R SW C S V S Switch closed for V S = 1 S Switch-level model including gate capacitance and drain resistance C S and R SW dependent upon device sizes and process For minimum-sized devices in a 0.5u process KΩ n channel C S 1.5fF R sw 6KΩ p channel Considerable emphasis will be placed upon device sizing to manage C S and R SW Model Parameters : {C S,R SW }

Extended Square-Law Model I I B = 0 = 0 0 V V S T W V = < L W μc ( V V ) ( 1+ λv ) V V V V V L DS I μc V V V V V V V V D OX S T DS S T DS S T V T OX S T DS S T DS S T + γ ( φ V φ ) = VT0 BS Model Parameters : {μ,c OX,V T0,φ,γ,λ} Design Parameters : {W,L} but only one degree of freedom W/L

Short-Channel Model 0 V V S T θ W I = D μc V V V V V V < V OX S T DS S T DS 1 S θ L 1 W θμc V V V V V V OX S T S T DS 1 S L α ( ) θ ( V ) α α ( ) θ ( V ) T T α α is the velocity saturation index, α 1 Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

BSIM model Note this model has 95 model parameters!

BSIM Binning Model - Bin on device sizes - multiple BSIM models! With 3 bins, this model has 3040 model parameters!

BSIM Corner Models - Often 4 corners in addition to nominal TT, FF, FS, SF, and SS - five different BSIM models! TT: typical-typical FF: fast n, fast p FS: fast n, slow p SF: slow n, fast p SS: slow n, slow p With 4 corners, this model has 475 model parameters!

Accuracy Complexity Hierarchical Model Comparisons BSIM Binning Models Analytical Numerical (for simulation only) L Number of Model Parameters BSIM Models Number of Model Parameters Square-Law Models Number of Model Parameters Switch-Level Models Approx 3000 (for 30 bins) Approx 100 3 to 6 W Number of Model Parameters 0 to

Corner Models Basic Model { FF (Fast n, Fast p) FS (Fast n, Slow p) TT Typical-Typical SF (Slow n, Fast p) SS (Slow n, Slow p) Corner Model Applicable at any level in model hierarchy (same model, different parameters) Often 4 corners (FF, FS, SF, SS) used but sometimes many more Designers must provide enough robustness so good yield at all corners

n-channel. p-channel modeling Source ate Drain Bulk I D 3 V S4.5 D n-channel MOSFET D 1.5 1 V S3 V S S D S 0.5 0 0 1 3 4 5 VDS S4 S3 S S1 V S1 V > V > V > V > 0 V DS I V S I D B S D S I B B V BS V DS 0 V V S Tn W V = < L W ( ) L I =I =0 DS I μc V V V V V V V V D n OX S Tn DS S Tn DS S Tn B (for enhancement devices) μ C V V V V V V V n OX S Tn S Tn DS S Tn Positive V DS and V S cause a positive I D

Bulk Source n-channel. p-channel modeling ate Drain (for enhancement devices) p-channel MOSFET S S D D D B 0 V V S Tp S W VDS I = -μc V V V V V V > V V S L V S W B V BS -μ C p OX ( V V S Tp ) V V V V V S Tp DS S Tp V I DS L I B I =I =0 B I D D D p OX S Tp DS S Tp DS S Tp Negative V DS and V S cause a negative I D Functional form of models are the same, just sign differences and some parameter differences (usually mobility is the most important)

n-channel. p-channel modeling Bulk Source ate Drain V S I I D S B D I B V BS V DS p-channel MOSFET (for enhancement devices) 0 V V S Tp W V L W ( ) L I =I =0 DS I = -μc V V V V V V > V V D p OX S Tp DS S Tp DS S Tp B -μ C V V V V V V V p OX S Tp S Tp DS S Tp Alternate equivalent representation 0 V V S Tp W V L W ( ) L I =I =0 B These look like those for the n-channel device but with DS I = μc V V V V V V < V V D p OX S Tp DS S Tp DS S Tp μ C V V V V V V V p OX S Tp S Tp DS S Tp

D n-channel. p-channel modeling D S S S D S D D D B B S S I V S I D D I B B V BS V DS V S I S B I B V BS V DS S I D D I D 3.5 1.5 V S4 V S3 Models essentially the same with different signs and model parameters 1 V S 0.5 0 V S1 0 1 3 4 5 V DS VDS VS4 > VS3 > VS > V S1> 0 0 V V S Tn W V = < L W μ C ( V V ) V V V V V L I =I =0 DS I μc V V V V V V V V D n OX S Tn DS S Tn DS S Tn B n OX S Tn S Tn DS S Tn 0 V V S Tp W V L W ( ) L I =I =0 DS I = -μc V V V V V V > V V D p OX S Tp DS S Tp DS S Tp B -μ C p OX VS VTp VS VTp VDS VS VTp

Model Relationships Determine R SW and C S for an n-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u (Assume μc OX =100μAV -, C OX =.5fFu -,V T0 =1V, V DD =3.5V, V SS =0) 0 V V S T W V = < L W ( ) L DS I μc V V V V V V V V D OX S T DS S T DS S T μc V V V V V V V OX S T S T DS S T when SW is on, operation is deep triode

Model Relationships Determine R SW and C S for an n-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u (Assume μc OX =100μAV -, C OX =.5fFu -,V T0 =1V, V DD =3.5V, V SS =0) W V W L L ( ) DS I = μc V V V μc V V V D OX S T DS OX S T DS V 1 1 DS R = = = = 4KΩ SQ I W 1 D V S =VDD μc ( V V ) ( E 4) ( 35. 1 OX S T ) L V S =3.5V 1 C S = C OX WL = (.5fFµ - )(1µ ) =.5fF

Model Relationships Determine R SW and C S for an p-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u ( C OX =.5fFu -,V T0 =1V, V DD =3.5V, V SS =0) Observe µ n \ µ p 3 0 V V S T W V = < L W ( ) L DS I μc V V V V V V V V D OX S T DS S T DS S T μc V V V V V V V OX S T S T DS S T When SW is on, operation is deep triode

Model Relationships Determine R SW and C S for an p-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u ( C OX =.5fFu -,V T0 =1V, V DD =3.5V, V SS =0) Observe µ n \ µ p 3 0 V V S T W V = < L W ( ) L DS I μc V V V V V V V V D OX S T DS S T DS S T μc V V V V V V V OX S T S T DS S T When SW is on, operation is deep triode

Model Relationships Determine R SW and C S for an p-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u Observe µ n \ µ p 3 ( C OX =.5fFu -,V T0 =1V, V DD =3.5V, V SS =0) W V W DS I = μc V V V μc ( V V ) V L L D p OX S T DS p OX S T DS V 1 1 DS R = = = = 1KΩ SQ I W 1 1 D V S =VDD μc ( V V ) ( E 4) ( 35. 1 p OX S T ) L V S =3.5V 3 1 C S = C OX WL = (.5fFµ - )(1µ ) =.5fF Observe the resistance of the p-channel device is approximately 3 times larger than that of the n-channel device for same bias and dimensions!

Modeling of the MOSFET oal: Obtain a mathematical relationship between the port variables of a device. I = f ( V,V,V ) I I D B 1 = f = f 3 S DS BS ( VS,VDS,VBS ) ( V ) S,VDS,VBS ate Drain I D I D I B V DS Bulk Simple dc Model V S V BS Small Signal Better Analytical dc Model Sophisticated Model for Computer Simulations Frequency Dependent Small Signal Simpler dc Model

Small-Signal Model oal with small signal model is to predict performance of circuit or device in the vicinity of an operating point Operating point is often termed Q-point

Small-Signal Model y Y Q Q-point X Q x Analytical expressions for small signal model will be developed later

End of Lecture 14