Waveguide Circuit Analysis Using FDTD

Similar documents
, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

M344 - ADVANCED ENGINEERING MATHEMATICS

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

Applications of Definite Integral

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Chapter 6 Polarization and Crystal Optics

50 AMC Lectures Problem Book 2 (36) Substitution Method

VIBRATION ANALYSIS OF AN ISOLATED MASS WITH SIX DEGREES OF FREEDOM Revision G

Signal Flow Graphs. Consider a complex 3-port microwave network, constructed of 5 simpler microwave devices:

Applications of Definite Integral

8 THREE PHASE A.C. CIRCUITS

University of Sioux Falls. MAT204/205 Calculus I/II

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 8. Waveguides Part 5: Coaxial Cable

Logarithms LOGARITHMS.

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

Magnetically Coupled Coil

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

] dx (3) = [15x] 2 0

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

y z A left-handed system can be rotated to look like the following. z

Parabola and Catenary Equations for Conductor Height Calculation

Chapter 6 Notes, Larson/Hostetler 3e

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 7. Waveguides Part 4: Rectangular and Circular Waveguide

Electromagnetism Notes, NYU Spring 2018

Chapter 5 Waveguides and Resonators

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

A Primer on Continuous-time Economic Dynamics

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Section 6.1 INTRO to LAPLACE TRANSFORMS

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Matrix- System of rows and columns each position in a matrix has a purpose. 5 Ex: 5. Ex:

THE ANALYSIS AND CALCULATION OF ELECTROMAGNETIC FIELD AROUND OVERHEAD POWER LINE HongWang Yang

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Section 4: Integration ECO4112F 2011

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

C1M14. Integrals as Area Accumulators

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

ENERGY AND PACKING. Outline: MATERIALS AND PACKING. Crystal Structure

The Ellipse. is larger than the other.

Section 6.1 INTRO to LAPLACE TRANSFORMS

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Lecture 1 - Introduction and Basic Facts about PDEs

Part 4. Integration (with Proofs)

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Section 4.4. Green s Theorem

ES.182A Topic 32 Notes Jeremy Orloff

Designing Information Devices and Systems I Discussion 8B

Solutions to Assignment 1

Name Solutions to Test 3 November 8, 2017

ECE Microwave Engineering

1 Bending of a beam with a rectangular section

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Math 360: A primitive integral and elementary functions

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

Chapter 9 Definite Integrals

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

POLYPHASE CIRCUITS. Introduction:

Waveguide Introduction & Analysis Setup

Linear Algebra Introduction

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

SOLVING SYSTEMS OF EQUATIONS, ITERATIVE METHODS

21.6 Green Functions for First Order Equations

Lesson 8.1 Graphing Parametric Equations

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

6.5 Improper integrals

Chapter 4 State-Space Planning

Chapter 3 The Schrödinger Equation and a Particle in a Box

Lecture Solution of a System of Linear Equation

Nondeterministic Automata vs Deterministic Automata

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads

Lecture Outline. Dispersion Relation Electromagnetic Wave Polarization 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3c

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Waves in dielectric media. Waveguiding: χ (r ) Wave equation in linear non-dispersive homogenous and isotropic media

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

The Trapezoidal Rule

Type 2: Improper Integrals with Infinite Discontinuities

21.1 Using Formulae Construct and Use Simple Formulae Revision of Negative Numbers Substitution into Formulae

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Line Integrals and Entire Functions

Polyphase Systems. Objectives 23.1 INTRODUCTION

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx"#t ( ) = 1 2" ( )"( x,t) PC 3101 Quantum Mechanics Section 1

MATH Final Review

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

x ) dx dx x sec x over the interval (, ).

Equations of Motion. Figure 1.1.1: a differential element under the action of surface and body forces

Transcription:

11/1/16 EE 533 Eletromgneti nlsis Using Finite Differene Time Domin Leture # Wveguide Ciruit nlsis Using FDTD Leture These notes m ontin oprighted mteril obtined under fir use rules. Distribution of these mterils is stritl prohibited Slide 1 Leture Outline Slb Wveguides Frequen Domin nlsis of Slb Wveguides Wveguide Soures in FDTD Refletion nd Trnsmission in Wveguides Leture Slide 1

11/1/16 Slb Wveguides Leture Slide 3 D pproimtion of Optil Integrted Ciruits It is possible to ver urtel simulte n optil integrted iruit in two dimensions using the effetive inde method. n 1,eff n,eff Effetive indies re best omputed b modeling the vertil ross setion s slb wveguide. simple verge inde n lso produe good results. n 1,eff n,eff Leture Slide 4

11/1/16 The Critil ngle nd Totl Internl Refletion When n eletromgneti wve is inident on mteril with lower refrtive inde, it is totll refleted when the ngle of inidene is greter thn the ritil ngle. n 1 n 1 n sin 1 n1 in in Emple Wht is the ritil ngle for fused sili (glss). The refrtive inde t optil frequenies is round 1.5. n n 1 1. sin 41.81 1.5 Leture Slide 5 The Slb Wveguide If we sndwih slb of mteril between two mterils with lower refrtive inde, we form slb wveguide. TIR n n 1 TIR Conditions n n n 1 nd n 3 n 3 Leture Slide 6 3

11/1/16 R Tring nlsis m kn eff kn sin The round trip phse of r must be n integer multiple of. euse of this, onl ertin ngles re llowed to propgte in the wveguide. Leture Slide 7 Frequen Domin nlsis of Slb Wveguides Leture Slide 8 4

11/1/16 Mwell s Equtions In Leture 11, we normlied the eletri fields nd rrived t Mwell s equtions in the following form: 1 D H t r H E t D r E For this slb wveguide nlsis in the frequen domin, we eliminte the D field. r H j E r E j H H H j E H H j E H H j E E E j H E E j H E E j H Leture Slide 9 Wveguide Modes ssume Solution Modes in wveguide hve the following form: j E,, e, j H,, e,,, j e The derivtive E, e j e j, H j j, e e, j j, e j E j j, e j H Conlusion j Leture Slide 1 5

11/1/16 6 Leture Slide 11 Redution of Dimensions Slb Wveguides re Uniform long nd j Mwell s Equtions Redue to j j j j j j j j j j j j j j j j j j j j Leture Slide 1 Two Distint Modes E Mode H Mode Mwell s equtions hve deoupled into two sets of three equtions. j j j j j j j j j j

11/1/16 Normlie the Grid We normlie the grid oordinte s follows k We lso reognie tht kn n eff eff Under these onditions, Mwell s equtions for the two modes beome E Mode jneff j n eff j H Mode jneff j n eff j Leture Slide 13 Mtri Representtion of Fields on Grid 1 D Sstems E 1 E E E E 4 5 3 E1 E E E 3 E4 E 5 D Sstems E1 E E3 E4 E5 E6 E7 E8 E9 E1 E11 E1 E13 E14 E15 E16 E1 E E 3 E4 E 5 E6 E 7 E8 E E 9 E1 E11 E 1 E13 E 14 E15 E 16 Leture Slide 14 7

11/1/16 Mwell s Equtions in Mtri Form The equtions for the E mode n be written in mtri form s jneff j n eff j Db jn b jε h eff n eff μ b D jμ b e μ ε ε μ 1 ε ε N 1 μ μ N 1 1 1 1 1 e D k 1 1 1 1 1 1 h 1 D k 1 1 1 1 Leture Slide 15 1 N 1 i i bi in Mtri Wve Eqution We strt with Mwell s equtions in mtri form. Db jn b jε h eff n eff μ b D jμ b e We solve the seond two equtions for the mgneti field quntities. b n μ b 1 eff jμ D 1 e We will use this eqution gin. We substitute these into the first eqution to get the mtri wve eqution. h Db jn b jε eff h j jn n j 1 e 1 eff eff D μ D μ ε jdμ D jn μ jε This is generlied eigen vlue problem h 1 e 1 eff h 1 e 1 h 1 e Dμ D ε neffμ Dμ D ε 1 h 1 e 1 Dμ D ε neffμ μ neff Leture Slide 16 8

11/1/16 Solving the Eigen Vlue Problem We n use MTL s built in eig() funtion to solve this eigen vlue problem. [V,D] = eig(,); The solution n be interpreted s 1 1 1 1 1 1 1 1 1 3 3 3 V 1 1 N 1 N 1 N 1 1 1 N N N 1 n eff neff D N n eff The eigen vetors desribe the mplitude profile of the modes. e jkneff The eigen vlues desribe the umultion of phse. Leture Slide 17 Conept of the Eigen Vetor Mtri The olumns of the eigen vetor mtri re the modes of the wveguide. V Leture Slide 18 9

11/1/16 MTL Code for Slb Wveguide nlsis funtion [E_sr,H_sr,neff,Z,ind] = emode(ur,ur,er,dp) % EZMODE Clulte the Fundmentl Mode of Slb Wveguide % for the E Mode % % [E_sr,H_sr,neff,Z,ind] = fmode(ur,ur,er,dp) % % dp is the normlied grid resolution % dp = k*d ε 1 ε ε ε N % DETERMINE NUMER OF POINTS ON GRID N = length(er); % CONSTRUCT DIGONL MTERIL MTRICES UR = dig(sprse(ur(:))); UR = dig(sprse(ur(:))); ER = dig(sprse(er(:))); % UILD DERIVTIVE OPERTORS DHX = spdigs(-ones(n,1)/dp,-1,sprse(n,n)); DHX = spdigs(ones(n,1)/dp,,dhx); DEX = spdigs(-ones(n,1)/dp,,sprse(n,n)); DEX = spdigs(ones(n,1)/dp,1,dex); % SOLVE EIGEN-VLUE PROLEM = full(er + DHX/UR*DEX); = full(inv(ur)); [Z,NEFF] = eig(,); NEFF = sqrt(dig(neff)); % FIND FUNDMENTL MODE [neff,ind] = m(rel(neff)); E_sr = Z(:,ind); 1 1 1 1 1 1 1 1 e h 1 D D k k 1 1 1 1 1 1 1 h 1 e DμD ε μ 1 neff We identif the fundmentl mode s the mode with the lrgest rel vlue. % COMPUTE H_sr H_sr = -neff*(ur\e_sr); See Slide 16 Leture Slide 19 Tpil Modes in Slb Wveguide (E Mode) n1 1. 3 n. n3 1. Leture Slide 1

11/1/16 Wveguide Soures in FDTD Leture Slide 1 Rell Totl Field/Sttered Field D FDTD Grid totl field sttered field Problem Points! j 1 j sr sr Leture Slide 11

11/1/16 Rell Injeting Plne Wve (E Mode) We lulte the eletri field s E sr j sr t g t We lulte the mgneti field s jsr 1 sr r H n t g t t t r mplitude due to Mwell s equtions Del through one hlf of grid ell Hlf time step differene Leture Slide 3 Modifition for Wveguide Soures Plne Wve Soure H E sr jsr t jsr 1 sr t t g t r gtt r Del neff t t Wveguide Soure E sr jsr t jsr 1 sr t t Re ep r t v j ft E Re ep H r t vh j f t t Rmp funtion Comple mode mplitudes from emode() Leture Slide 4 Hrmoni osilltion (pure frequen) Note: These soures re t single frequen f. 1

11/1/16 Etrting the Slb Wveguide(s) from FDTD window just outside the top PML is used for the soure nd to nle refleted wves. nother window just outside the side PML is used for nling trnsmitted wves. Leture Slide 5 nimtion of Wveguide Simultion Soure Profile Wves eiting trnsmission plne Wves sttered from wveguide Leture Slide 6 13

11/1/16 Refletion From nd Trnsmission Through Wveguides Leture Slide 7 Modif the Fourier Trnsform For wveguide iruits, we tpill use soure tht is t pure frequen. To lulte Fourier trnsform from sinusoidl soure, we run the simultion until sted stte hs been rehed nd then integrte over single period. This is not neessr, but is fster. We strt with the stndrd Fourier trnsform, but we onl hve to integrte over one period beuse the funtion will just keep repeting s long s it is t sted stte.. t 1 f j ft F f f f t e dt This is implemented in FDTD s t j ft m F f t f e f m 1 f Leture Slide 8 14

11/1/16 MTL Code for Revised Fourier Trnsform We must ensure tht one wve le is resolved with n integer number of time steps. % SNP TIME STEP SO WVE PERIOD IS N INTEGER NUMER OF STEPS period = 1/f; Nt = eil(period/dt); dt = period/nt; The Fourier trnsform is omputed during the lst wve le of the simultion. % Updte Fourier Trnsform if T>(STEPS-Nt) Eref = Eref + (K^(T-STEPS+Nt))*E(:,nref); Etrn = Etrn + (K^(T-STEPS+Nt))*E(ntrn,:); end fter the min loop, we finish the trnsform s % FINISH TRNSFORMS Eref = Eref * (*dt/period); Etrn = Etrn * (*dt/period); Note: pure sinusoid soure is used so there is no need to Fourier trnsform the soure or divide b its mplitude. Leture Slide 9 Field ross Wveguide During the FDTD simultion, we use the Fourier trnsform proedure to lulte the sted stte field ross the wveguide. 1 16.34 Leture Slide 3 15

11/1/16 Field In Terms of Eigen Modes The field ross the wveguide must be liner sum of the eigenmodes. v 1 v v3 v4 v5 1 3 4 5.8.4..1. 1 e 3 1v1v 3v34v4 5v5 V mode 1 4 5 mode mode 3 mode 4 mode 5 Leture Slide 31 Clulting the Energ in Eh Mode Using FDTD, we lulte the sted stte field e round the input nd output(s) of the wveguide iruit. We n then lulte the omple mplitudes of ll the modes. e V V e ref trn 1 ref ref ref ref ref V V e e 1 trn trn trn trn trn Now we n lulte the frtion of power in ll of the modes. p p ref trn 1 in 1 in ref trn Most of the time we onl re bout the frtion of power in the fundmentl mode. p ref ref trn ptrn in in Leture Slide 3 16

11/1/16 MTL Code for Power Clultion First we lulte the omple mplitudes of the eigen modes. % CLCULTE MODE MPLITUDES ref = EZR\Eref(NPML(1)+1:N-NPML()); trn = EZT\Etrn(NPML(3)+1:N-NPML(4))'; Eigen vetor mtries Grb fields outside of PML (simplifies mode lultion) Seond, we lulte refletion nd trnsmission. % CLCULTE TRNSMITTNCE ND REFLECTNCE OF FUNDMENTL MODE REF = bs(ref(ind_ref))^; TRN = bs(trn(ind_trn))^; Leture Slide 33 Emple Trnsmission Clultion 1 16 ssuming the wveguide ws soured with onl the fundmentl mode with unit mplitude sr 1..87. trn.6.15.5.34 R % T.87 1 76% Leture Slide 34 17

11/1/16 enhmrk Simultions The wveguide prmeters re n n 1.55 m ld ore 1.5..5 m n ld n ore n ld Leture Slide 35 18