Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Similar documents
1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

Automatic Control Systems

CONTROL * ~ SYSTEMS ENGINEERING

Feedback Control of Dynamic Systems

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

ELECTRICAL ENGINEERING

Table of Laplacetransform

Digital Control Engineering Analysis and Design

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Analysis and Synthesis of Single-Input Single-Output Control Systems

Index. Index. More information. in this web service Cambridge University Press

FEEDBACK and CONTROL SYSTEMS

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

ECE317 : Feedback and Control

VALLIAMMAI ENGINEERING COLLEGE

EEE 184 Project: Option 1

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK



ECE317 : Feedback and Control

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Stability Analysis Techniques

Feedback Control of Linear SISO systems. Process Dynamics and Control

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

EET 3212 Control Systems. Control Systems Engineering, 6th Edition, Norman S. Nise December 2010, A. Goykadosh and M.

ME 475/591 Control Systems Final Exam Fall '99

Control Systems. University Questions

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB

1 Chapter 9: Design via Root Locus

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Controls Problems for Qualifying Exam - Spring 2014

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

Design of Nonlinear Control Systems with the Highest Derivative in Feedback

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Process Modelling, Identification, and Control

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

EC 8391-CONTROL SYSTEMS ENGINEERING. Questions and Answers PART-A. Unit - I Systems Components And Their Representation

Autonomous Mobile Robot Design

D(s) G(s) A control system design definition

Outline. Classical Control. Lecture 5

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Course Summary. The course cannot be summarized in one lecture.

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Process Modelling, Identification, and Control

João P. Hespanha. January 16, 2009

Systems Analysis and Control

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

Essence of the Root Locus Technique

Overview of the Seminar Topic

Optimal Control of Weakly Coupled Systems and Applications

Control Systems. EC / EE / IN. For

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

SRM UNIVERSITY DEPARTMENT OF BIOMEDICAL ENGINEERING ODD Semester DAY floor

OPTIMAL CONTROL AND ESTIMATION

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

SRI VENKATESWARA COLLEGE OF ENGINEERING

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Linear Systems Control

Root Locus Design. MEM 355 Performance Enhancement of Dynamical Systems

IC6501 CONTROL SYSTEMS

Electrical Engg. Department Semester :4

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Chapter 7. Digital Control Systems

Inverted Pendulum. Objectives

Chapter 3. State Feedback - Pole Placement. Motivation

EE 422G - Signals and Systems Laboratory

Digital Pendulum Control Experiments

Control Systems Lab - SC4070 Control techniques

Introduction to Aircraft Flight. Mechanics

SYLLABI FOR THE WRITTEN TEST

Unit 8: Part 2: PD, PID, and Feedback Compensation

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Topic # Feedback Control Systems

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Systems Analysis and Control

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP Systems-Model: 205)

Mathematical Theory of Control Systems Design

PGVES ENTRANCE EXAM SYLLABUS Pattern: objective type

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

State Observers and the Kalman filter

EE3CL4: Introduction to Linear Control Systems

Video 5.1 Vijay Kumar and Ani Hsieh

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

Introduction to. Process Control. Ahmet Palazoglu. Second Edition. Jose A. Romagnoli. CRC Press. Taylor & Francis Group. Taylor & Francis Group,

CYBER EXPLORATION LABORATORY EXPERIMENTS

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University

INSTRUMENTAL ENGINEERING

EE C128 / ME C134 Final Exam Fall 2014

Answers to multiple choice questions

Proportional plus Integral (PI) Controller

YTÜ Mechanical Engineering Department

Alireza Mousavi Brunel University

Transcription:

Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop and Closed-Loop Control Systems.............. 7 1.3 State Space and Transfer Functions.................... 10 1.4 Mathematical Modeling of Real Physical Systems........... 13 1.5 Models of Some Control Systems...................... 18 1.6 Linearization of Nonlinear Systems..................... 22 1.7 MATLAB Computer Analysis and Design................. 32 1.8 Book Organization................................. 33 1.9 References...................................... 33 1.10 Problems...................................... 34 PART I METHODS AND CONCEPTS 2. Transfer Function Approach........................... 41 2.1 Frequency Domain Representations.................... 42 2.1.1 System Transfer Functions........................ 43 2.2 Block Diagrams................................... 49 2.2.1 Modeling and Block Diagrams of a DC Motor............. 54 2.3 Block Diagram Algebra.............................. 57 2.4 Signal Flow Graphs and Mason s Rule................... 67 2.5 Sampled Data Control Systems........................ 76 2.5.1 Open-Loop Transfer Functions...................... 77 2.5.2 Closed-Loop Transfer Functions..................... 80 2.5.3 Transfer Functions of Digital Control Systems............ 82 2.6 Transfer Function MATLAB Laboratory Experiment.......... 84 2.7 References...................................... 86 2.8 Problems....................................... 87 3. State Space Approach................................ 95 3.1 State Space Models................................ 97 3.1.1 The State Space Model and Differential Equations......... 97 3.1.2 State Space Variables from Transfer Functions.......... 101 3.2 Time Response from the State Equation................ 114 3.2.1 Time Domain Solution.......................... 114 3.2.2 Solution Using the Laplace Transform................ 120 3.2.3 State Space Model and Transfer Function.............. 121

3.3 Discrete-Time Models.............................. 122 3.3.1 Difference Equations and State Space Form............ 122 3.3.2 Discrete Transfer Function and State Space Model........ 123 3.3.3 Discretization of Continuous-Time Systems............. 125 3.3.4 Solution of the Discrete-Time State Equation............ 129 3.3.5 Solution of the Discrete State Equation by the -transform... 133 3.3.6 Response Between Sampling Instants................ 134 3.3.7 Euler s Approximation.......................... 135 3.4 The System Characteristic Equation and Eigenvalues....... 137 3.4.1 Multiple Eigenvalues........................... 141 3.4.2 Modal Decomposition........................... 142 3.5 State Space MATLAB Laboratory Experiments............ 144 3.5.1 Experiment 1 The Inverted Pendulum............... 144 3.5.2 Experiment 2 Response of Continuous Systems......... 146 3.5.3 Experiment 3 Response of Discrete Systems........... 148 3.6 References..................................... 150 3.7 Problems...................................... 151 4. Linear System Stability.............................. 159 4.1 Stability Concept and Main Definitions.................. 161 4.2 System Eigenvalues and Stability..................... 162 4.2.1 Stability of Distinct Eigenvalues.................... 162 4.2.2 Stability of Multiple Eigenvalues.................... 164 4.2.3 Case Studies................................ 167 4.2.4 Jordan Canonical Form......................... 168 4.2.5 Multiple Eigenvalues on the Imaginary Axis............. 175 4.2.6 Case Study: Flexible Space Structure................ 178 4.3 Lyapunov Stability of Linear Systems................... 179 4.4 The Routh Hurwitz Criterion......................... 184 4.4.1 The Routh Table.............................. 189 4.5 Algebraic Stability Tests for Discrete Systems............. 198 4.5.1 Jury s Test................................. 198 4.5.2 Bilinear Transformation and the Routh Hurwitz Method..... 201 4.6 Frequency Domain Stability Study.................... 203 4.7 MATLAB Laboratory Experiment...................... 211 4.8 References..................................... 213 4.9 Problems...................................... 215

5. Controllability and Observability...................... 221 5.1 Observability of Discrete Systems..................... 223 5.2 Observability of Continuous Systems................... 225 5.3 Controllability of Discrete Systems..................... 227 5.4 Controllability of Continuous Systems.................. 229 5.5 Additional Controllability/Observability Topics............. 233 5.6 Observer (Estimator) Design......................... 241 5.6.1 Full-Order Observer Design...................... 241 5.6.2 Reduced-Order Observer (Estimator)................. 244 5.7 MATLAB Case Study: F-8 Aircraft..................... 247 5.8 MATLAB Laboratory Experiment...................... 249 5.9 References..................................... 252 5.10 Problems..................................... 253 PART II ANALYSIS AND DESIGN 6. Transient and Steady State Responses................. 261 6.1 Response of Second-Order Systems................... 262 6.2 Transient Response Parameters...................... 266 6.3 Transient Response of High-Order Systems.............. 269 6.4 Steady State Errors............................... 276 6.5 Response of High-Order Systems by MATLAB............ 281 6.6 Control System Performance Specifications.............. 283 6.7 MATLAB Laboratory Experiment...................... 285 6.8 References..................................... 287 6.9 Problems...................................... 287 7. Root Locus Technique.............................. 291 7.1 Introduction..................................... 291 7.2 Construction of the Root Locus....................... 296 7.3 Motivation for Time Domain Controller Design............. 312 7.4 Discrete-Time Root Locus........................... 318 7.5 MATLAB Case Studies............................. 318 7.5.1 Case Study: F-8 Aircraft......................... 318 7.5.2 Case Study: A Synchronous Machine................ 320 7.6 MATLAB Laboratory Experiments..................... 322 7.6.1 Hydro Power Plant Experiment..................... 322 7.6.2 Discrete-Time Root Locus Experiment................ 324 7.7 References..................................... 325 7.8 Problems...................................... 326

8. Time Domain Controller Design....................... 331 8.1 Introduction..................................... 331 8.2 State Feedback and Pole Placement................... 333 8.3 Common Dynamic Controllers........................ 337 8.3.1 PD Controller................................ 338 8.3.2 PI Controller................................ 338 8.3.3 PID Controller............................... 339 8.3.4 Phase-Lag Controller........................... 339 8.3.5 Phase-Lead Controller.......................... 339 8.3.6 Phase-Lag-Lead Controller....................... 340 8.4 Rate Feedback Control............................. 340 8.5 Compensator Design by the Root Locus Method........... 342 8.5.1 Improvement of Steady State Errors................. 343 8.5.2 Improvement of Transient Response................. 353 8.5.3 PID and Phase-Lag-Lead Controller Designs............ 364 8.6 MATLAB Case Studies............................. 369 8.6.1 Ship Stabilization by a PD Controller................. 369 8.6.2 PID Controller for a Voltage Regulator Control System...... 371 8.7 Comments on Discrete-Time Controller Design............ 374 8.8 MATLAB Laboratory Experiment...................... 374 8.9 References..................................... 375 8.10 Problems..................................... 375 9. Frequency Domain Controller Design.................. 381 9.1 Introduction..................................... 381 9.2 Frequency Response Characteristics................... 382 9.3 Bode Diagrams.................................. 385 9.3.1 Phase and Gain Stability Margins from Bode Diagrams..... 392 9.3.2 Steady State Errors and Bode Diagrams.............. 394 9.4 Compensator Design Using Bode Diagrams.............. 399 9.4.1 Phase-Lag Controller........................... 401 9.4.2 Phase-Lead Controller.......................... 402 9.4.3 Phase-Lag-Lead Controller....................... 403 9.4.4 Compensator Design with Phase-Lead Controller......... 404 9.4.5 Compensator Design with Phase-Lag Controller.......... 410 9.4.6 Compensator Design with Phase-Lag-Lead Controller...... 413

9.5 MATLAB Case Study.............................. 417 9.6 Comments on Discrete-Time Controller Design............ 423 9.7 MATLAB Laboratory Experiment...................... 424 9.8 References..................................... 426 9.9 Problems...................................... 426 10. Control System Theory Overview..................... 433 10.1 Time-Varying Systems............................ 434 10.2 Stochastic Linear Control Systems.................... 437 10.3 Optimal Linear Control Systems..................... 440 10.3.1 Optimal Deterministic Regulator Problem............. 441 10.3.2 Optimal Kalman Filter.......................... 444 10.3.3 Optimal Stochastic Regulator Problem............... 447 10.4 Linear Time-Delay Systems......................... 448 10.5 System Identification and Adaptive Control.............. 450 10.5.1 System Identification.......................... 450 10.5.2 Adaptive Control............................. 452 10.6 Nonlinear Control Systems......................... 454 10.7 Comments.................................... 456 10.8 References.................................... 457 Appendix............................................ 463 A. Laplace Transform................................ 464 A.1 Definition of the Laplace Transform and its Main Property..... 464 A.2 Tables of Properties and Common Pairs................ 466 B. -Transform..................................... 469 B.1 Definition of the -Transform and its Main Property........ 469 B.2 Relation between the Z and Laplace Transforms.......... 471 B.3 Tables of Properties and Common Pairs................ 473 C. Some Results from Linear Algebra..................... 475 D. MATLAB Manual.................................. 479 MATLAB Tutorial Linear Systems and Control.............. 479 Index............................................... 491