First Year Organic Chemistry THE CHEMISTRY OF THE CARBONYL GROUP: CORE CARBONYL CHEMISTRY

Similar documents
THE CHEMISTRY OF THE CARBONYL GROUP

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Chem 263 March 7, 2006

Chapter 18: Carbonyl Compounds II

Chapter 17: Carbonyl Compounds II

Chem 263 Notes March 2, 2006

Chem 263 March 28, 2006

acetaldehyde (ethanal)

Chem 263 Nov 3, 2016

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 24, Properties of Carboxylic Acids

ζ ε δ γ β α α β γ δ ε ζ

Topic 9. Aldehydes & Ketones

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 20: Aldehydes and Ketones

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

Chapter 20: Aldehydes and Ketones

Carbonyl Chemistry. aldehydes ketones. carboxylic acid and derivatives. Wednesday, April 29, 2009

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Chapter 17 Aldehydes and Ketones

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Additions to the Carbonyl Groups

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chapter 12: Carbonyl Compounds II

Aldehydes and Ketones

Topic 4 Aldehydes and Ketones

Suggested solutions for Chapter 28

Chapter 9 Aldehydes and Ketones Excluded Sections:

Carboxylic Acids and Nitriles

Aldehydes & Ketones I

Loudon Chapter 20 & 21 Review: Carboxylic Acids & Derivatives CHEM 3331, Jacquie Richardson, Fall Page 1

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Basic Organic Chemistry

TOPIC 3 - ALDEHYDES AND KETONES (Chapters 12 & 16)

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

Chapter 20: Aldehydes and Ketones

Chapter 22 Enols and Enolates

Chapter 14 Aldehydes and Ketones: Addition Reactions at Electrophilic Carbons Overview of Chapter Structures of aldehydes and ketones

Week 6 notes CHEM

Lecture 1: Chemistry of the Carbonyl Group

Introduction to Organic Chemistry

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

Structure and Reactivity: Prerequired Knowledge

Chapter 18: Ketones and Aldehydes. I. Introduction

p Bonds as Electrophiles

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution

Reactions at α-position

The Organic Acids. Carboxylic Acids * *

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

Chem 263 Nov 28, Reactions of Carboxylic Acids and Derivatives: Strong Nucleophiles

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR" 2R"OH R + H 2 O OR" 3/8/16

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis]

Suggested solutions for Chapter 6

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Learning Guide for Chapter 7 - Organic Reactions I

Lecture 3: Aldehydes and ketones

Chapter 10: Carboxylic Acids and Their Derivatives

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model.

Acid/Base stuff Beauchamp 1

Chem 263 Nov 19, Cl 2

18.10 Conjugate Additions O O. O X BrCH 2 CH 2 CH 2 CCH 3 ± ± BrCH 2 CH 2 CH 2 CH 3. TsOH 1 O C O O W 3 CH 3 CCH 3 CH 3 CCH 2 CH 2 CH 2 CH 3

CHEM1902/ N-8 November Consider the following reaction sequences beginning with the carboxylic acid, E.

Chapter 19 Substitutions at the Carbonyl Group

Still More Carbonyl Chemistry

Products from reactions of carbon nucleophiles and carbon electrophiles used in the 14 C Game and our course:

Learning Guide for Chapter 15 - Alcohols (II)

CHEM 345 Problem Set 07 Key

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

12. Aldehydes & Ketones (text )

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02

Chapter 20: Carboxylic Acids

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)

Chapter 19 Carboxylic Acids

CH 3 CHCH 3 CH 3 CHCH 3 Isopropyl cation. Oxomium ion intermediate. intermediate (an electrophile)

Ch 20 Carboxylic Acids and Nitriles

Mechanism Summary for A-level AQA Chemistry

Chapter 18 Ketones and Aldehydes. Carbonyl Compounds. Chapter 18: Aldehydes and Ketones Slide 18-2

Chapter 18 Ketones and Aldehydes

Organic Chemistry Review: Topic 10 & Topic 20

CHEMISTRY 263 HOME WORK

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Loudon Chapter 10 Review: Alcohols & Thiols Jacquie Richardson, CU Boulder Last updated 4/26/2016

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

Aldehydes and Ketones : Aldol Reactions

What is in Common for the Following Reactions, and How Do They Work?

Transcription:

First Year rganic Chemistry TE CEMISTY F TE CABNYL GUP: CE CABNYL CEMISTY Professor Tim Donohoe 8 lectures, T, weeks 1-4, 2015 Wednesdays at 9am; Fridays at 10am (Dyson Perrins) andout A You will be able to download copies of the handouts from this course at http://donohoe.chem.ox.ac.uk/teaching/teaching.htm as well as through Weblearn 1

Course Structure 1) Nucleophilic addition to C= A) Nucleophiles and electrophiles: General principles B) eversible addition (hydrates and hemiacetals) C) Irreversible addition (organometallic addition and reduction) 2) Nucleophilic substitution of C= A) Acetals B) Imines, oximes and hydrazones C) Formation of C=C bonds from carbonyls D) emoval of C= from carbonyls 3) Nucleophilic substitution at C= A) Tetrahedral intermediates in substitution; B) Factors that affect reactivity of C= towards nucleophiles; leaving group ability; I spectroscopy C) The reactivity of acid chlorides (CCl) D) The reactivity of anhydrides (C) 2 E) The reactivity of esters C F) The reactivity of amides CN 2 4) Enolisation of carbonyl compounds A) keto-enol tautomerism B) enols and enolates as nucleophiles C) condensation reactions with carbonyl groups D) conjugate additions Suggested eading: Core Carbonyl Chemistry, J. Jones, xford Primer rganic Chemistry, Clayden, Greeves, Warren and Wothers rganic Chemistry, Volhard and Schore A guidebook to mechanism in organic chemistry, Sykes The Chemistry of the Carbonyl Group, Warren 2

1. Nucleophilic addition to C= A) Nucleophiles and Electrophiles Structure of carbonyls consider the and framework M picture of a C= Antibonding orbital resembles A p-orbital on carbon a p-orbital on Bonding orbital resembles So, C= have a low energy (unfilled) * orbital that has a large coefficient on carbon and this is crucial to its reactivity. Canonicals show the C is electron deficient In order to break a bond we place two electrons in the antibonding orbital; the bond order then becomes Bond order is: 3

When nucleophiles attack the C= group they do so by passing electrons from their highest occupied molecular orbital (M) to the lowest unoccupied molecular orbital (LUM) of the carbonyl ie. Negatively charged species are also attracted to the electron deficient carbon atom. So, in the addition of cyanide to acetone, the following electron movements are involved. a) Curly arrow representation b) orbitals involved All additions to C= follow the same pattern of events, but the nature of the M depends on the particular nucleophile used. nce you understand the orbitals involved you do not need to draw the orbitals for every addition to a carbonyl. We must make a distinction between reversible and irreversible additions: B eversible addition: eg. The addition of cyanide can be reversed by adding a base This happens because - CN is a good 4

The addition of water is also reversible and observed through the formation and collapse of hydrates 2 hydrate of ketone For this reversible reaction, the thermodynamic stability of the carbonyl versus the hydrate will determine the percentage of hydrate at equilibrium. Standard ketones (acetone) contain very little hydrate: Keq (in water, 25 C) Keq (in water, 25 C) 18 Cl 3 C 36 Me 0.01 F 3 C CF 3 22000 Me Me 1.8 x10-5 Factors influencing extent of hydration i) Steric hindrance: repulsion between groups that are close in space: ii) Electron withdrawing groups. nucleophiles Inductive effect increases the reactivity of the C= to 5

iii) Delocalisation (conjugation) Me Me Me Me These three factors influence other C= reactions too. f course, the addition of alcohols to C= is also easy (and reversible). Me + Me Me Me Some hemiacetals are stable because the alcohol attacks in an The formation of hemiacetals is catalysed by either ACID or BASE In ACID 6

In BASE Further reading: look up the (reversible) addition of bisulfite to carbonyl compounds and also the Meerwein Pondorff Verley reduction. C. Irreversible addition at a carbonyl is perhaps more common i) rganolithium reagents are very reactive: ii) Addition of organomagnesium reagents, such as Grignards, is v. important in synthesis 7

formation of Grignard reagents I ether Mg Br These organometallic reagents add to C=, although the precise details of the attack are complex because the metal ion acts as a Lewis acid. Mg + + Mg eduction of carbonyl compounds is observed when bulky Grignards are used e.g. tbumgbr: Mg 8

We see a similar pattern of reactivity during the Cannizzaro reaction: 2 PhC (i) Na (conc.) (ii) 3 + The mechanism involves base catalysed addition of hydroxide to the aldehyde; followed by hydride transfer. Q. Why does this reaction only work with aldehydes that have N alpha protons? owever, reduction of a carbonyl is best accomplished with NaB 4 or LiAl 4 Ketones are reduced to Aldehydes are reduced to eaction mechanism with LiAl 4 is more complex and takes place in an inert solvent such as ether (this is because 9

Li + LiAl 4 + Et 2 Al 2. Nucleophilic substitution of C= A) Acetals: In acid, hemiacetal formation from an aldehyde or ketone does not The acid allows The product is an emember, acetals only form in Also This process is an equilibrium and can be shifted in either direction by removal of the products or addition of excess of one reagent. To form an acetal use: To hydrolyse an acetal use: 10

Acetals are stable to base, nucleophiles and oxidants; so they are commonly used as FG FG FG FG B) Formation of Imines and related derivatives from carbonyls Nitrogen based nucleophiles also add to carbonyl compounds: consider attack of a primary amine at a ketone. C 3 -N 2 ther amine derivatives add to carbonyl compounds in an analogous manner. N 2 2 N N 2 11

rate These condensations are very p dependent N 2 + Step 1 Step 2 2 8 Aside on 2 amines: Note that secondary amines cannot condense with a carbonyl to produce a neutral compound N potent electrophile: see the N 12

And, just like aldehydes and ketones, imines are useful electrophiles although they are less electrophilic (because nitrogen is less electronegative than oxygen) A key step in the synthesis of Valsartan (Diovan) This is called reductive amination: a method for converting aldehydes and ketone to amines Bearing in mind the reaction of aldehydes and ketones with cyanide, we can rationalise the Strecker reaction C) Formation of C=C bonds from carbonyls i) Making alkenes from carbonyl compounds: the Wittig reaction (which consists of 1) eaction of an alkyl halide with triphenylphosphine 13

2) Treatment of the phosphonium salt with strong base to make an YLID 3) Immediate reaction of the ylid with a carbonyl compound to form an alkene ne of the best ways for making alkenes: 14

Ester stabilised ylids work fine but can sometimes be unreactive. Therefore, use a more reactive nucleophile: i) More reactive phosphorous derived compounds: the orner Wadsworth Emmons reaction D) emoval of C= from carbonyls: the Wolff Kishner reaction It is sometimes useful to be able to remove a C= completely from a molecule. There are several ways of doing this, dependent upon whether the molecule can tolerate acid or base. 15

3. Nucleophilic substitution at C= A) Tetrahedral intermediates in substitution verall, the substitution process can be represented as: Nu X Nu This reaction does NT go through a direct displacement: instead, the nucleophile finds it easier to add to the carbonyl group (the * is lower in energy and more accessible to the M of the nucleophile than a * orbital). The intermediate (known as a TETAEDAL INTEMEDIATE) can do two things, Nu X X Nu Lets focus on each step of this mechanism. 16

B) Step 1: ow does the nature of X affect the reactivity of the carbonyl group towards nucleophiles? There are two effects here: (i) Inductive electron withdrawal Increased electronegativity of X (ii) Conjugation of a lone pair on X with the C= Think about the shape of the ester oxygen In molecular orbital terms: By conjugating the two species the LUM and the M 17

B) Step 2: Leaving group ability determines which product is formed Leaving group ability: correlation with pka ow do we know which is the best leaving group? X There is already a scale that can help us: pka: X Large values of pka mean small values of Ka ie Small values of pka mean large values of Ka ie Leaving group X Me pka of -X N 2 Et MeC 2 Cl 18

Probing the nature of the carbonyl group by Infra-red (I) spectroscopy I spectroscopy measures Can be described using ooke s Law: emember that So, strong bonds absorb at high The factors discussed earlier will influence the strength of the C= bond in the following ways: 1) Delocalisation WEAKENS 2) Inductive effects STENGTEN The derivatives shown earlier have a combination of the 2 effects and this can be seen in the I. Compare the C= stretch of 19

Functional groups in action. C) X= chlorine then we have an acid chloride which are very reactive species because Cl Cl Cl N Et 3 N Cl Cl Note that a base must be present here because You can make acid chlorides from carboxylic acids like this: 20

D) When X=C these are called anhydrides and are slightly less reactive than acid chlorides So, oxygen shares its As one would expect, reaction of anhydrides mirrors that of acid chlorides 2 N E) X=, esters Esters are substantially less reactive towards nucleophiles than aldehydes and ketones; NaB 4, Me Esters do react, but only with more powerful nucleophiles, eg Na M e Na M e 21

We can also increase the reactivity of esters by using ACID catalysis Drive reaction to completion by using an excess of water or remove the alcohol by-product Further reading: the acid and base catalysed hydrolysis of esters can be classified into 8 different catagories (A AC 1, A AC 2, A AL 1, A AL 2, B AC 1, B AC 2, B AL 1, B AL 2) depending upon the mechanism-see J. March, Advanced rganic Chemistry, Fourth Ed, P378. Given the above, the following should come as no surprise: 1) eaction with an amine ( ) 2) eduction with LiAl 4 22

So, what happens if we try to make a ketone via reaction of an ester with Me Me Me In fact, this is a good method for making tertiary alcohols whereby two groups are the same Clearly there is a problem in making ketones with this chemistry. Three solutions are available. 1) eact a carboxylic acid with TW equivalents of a reactive organolithium reagent MeLi 2) Use an acid chloride rather than an ester; AND decrease the reactivity of the nucleophile by changing the metal counterion from lithium to 23

Solution 3 can wait until we have discussed amides: F) X= N 2, amides These are the least reactive of the derivatives (towards nucleophiles) discussed so far because As the constituents of poly amides (ie peptides) these functional groups are essential parts of biological systems. We can hydrolyse an amide bond in the laboratory, but require harsh acidic or basic conditions to do it 24

Generally, acid is better than base for hydrolysing amide, although strong bases such as can do the hydrolysis. 25

Think about the reduction of amides with LiAl 4 A simple way of making substituted amines involves coupling of an acid chloride with an amine to give an amide, followed by 26

Now we can return to solution 3 for making ketones from addition to carbonyl compounds without over-reaction. 3) Use a Weinreb s amide The chelate is Stable Doesn t Quenching with acid destroys the 27

The following scheme says it all Increased reactivity: Increased leaving group ability Cl -7 5 16 N 2 30 Increasing pka of leaving group's conjugate acid 28

Finally, note the central position that carboxylic acids have- they can be transformed into ecall methods for making carboxylic acids: The pka of a carboxylic acid can tell us a lot about the nature of the Advanced reading: for a comprehensive list of pka values for organic compounds (and more) see: http://research.chem.psu.edu/brpgroup/pka_compilation.pdf 29