Quantum Transport through Coulomb-Blockade Systems

Similar documents
Kubala, Björn & König, Jürgen & Pekola, Jukka Violation of the Wiedemann-Franz Law in a Single-Electron Transistor

Three-terminal quantum-dot thermoelectrics

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Coulomb Blockade and Kondo Effect in Nanostructures

arxiv: v1 [cond-mat.mes-hall] 25 Feb 2008

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Feb 1998

Building blocks for nanodevices

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 28 Jul 2000

single-electron electron tunneling (SET)

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Iterative real-time path integral approach to nonequilibrium quantum transport

Coulomb blockade and single electron tunnelling

arxiv:cond-mat/ v2 14 Feb 2006

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

The Physics of Nanoelectronics

Molecular Electronics

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Charges and Spins in Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Electronic transport in low dimensional systems

Quantum Transport and Dissipation

Part III: Impurities in Luttinger liquids

Electron counting with quantum dots

Open quantum systems

Quantum Information Processing with Semiconductor Quantum Dots

Superconducting properties of carbon nanotubes

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot

Concepts in Spin Electronics

arxiv: v1 [cond-mat.mes-hall] 28 Jun 2008

Numerical methods out of equilibrium -Threelectures-

Resolved dynamics of single electron tunneling using the RF-SET

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

(r) 2.0 E N 1.0

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

2 Introduction The quantum measurement is an essential ingredient of investigations of quantum coherent eects. In particular, it is needed to probe ma

Walking hand in hand Two-body quantum dynamics in excitronics

Quantum Quenches in Extended Systems

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Cotunneling and Kondo effect in quantum dots. Part I/II

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 8, April 12, 2017

Supercondcting Qubits

Interactions and Charge Fractionalization in an Electronic Hong-Ou-Mandel Interferometer

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Coherence by elevated temperature

Charge carrier statistics/shot Noise

1D quantum rings and persistent currents

Present and future prospects of the (functional) renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group

Lecture 2: Double quantum dots

Dissipation in Transmon

Coulomb blockade in metallic islands and quantum dots

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Coherent oscillations in a charge qubit

Writing Spin in a Quantum Dot with Ferromagnetic and. Superconducting Electrodes arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 2003

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

arxiv:cond-mat/ v1 22 Nov 1993

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A Tunable Kondo Effect in Quantum Dots

Ginzburg-Landau Theory of Type II Superconductors

Superconductivity at nanoscale

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Time-dependent DMRG:

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Tunneling Into a Luttinger Liquid Revisited

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Quantum Spectrometers of Electrical Noise

Single-Electron Tunneling

Electronic transport in topological insulators

Non-equilibrium time evolution of bosons from the functional renormalization group

Kondo satellites in photoemission spectra of heavy fermion compounds

Single Electron Transistor (SET)

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Single Electron Transistor (SET)

Quantum Noise as an Entanglement Meter

Quantum impurities in a bosonic bath

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Quantum behavior of graphene transistors near the scaling limit

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Examples of Lifshitz topological transition in interacting fermionic systems

arxiv:cond-mat/ v1 10 Oct 2002

A path integral approach to the Langevin equation

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Spontaneous Emission and the Vacuum State of EM Radiation. Miriam Klopotek 10 December 2007

Transcription:

Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1

Overview Motivation Single-electron box/transistor Coupled single-electron devices Model and Technique Real-time diagrammatics Thermoelectric transport Thermal and electrical conductance Quantum fluctuation effects on thermopower Multi-island systems Diagrammatics for complex systems New tunneling processes COQUSY6 p.2

Single-Electron Box Gate attracts charge to island. Tunnel barrier quantized charge E C -1 1 E ch () Q L E ch E ch (1) Q R V g E ch (-1) 2 C J box C g <n> 1 Quantitatively: E ch = Q2 L 2C J + Q2 R 2C g + Q R V g -1-2 -1 1 n x = e 2 2C Σ (n n x ) 2 + const., Coulomb staircase COQUSY6 p.3

Single-Electron Transistor -1 1 Two contacts transport E ch E C E ch () E ch (1) V g 2 E ch (-1) V t V t <n> 1-1 Quantitatively: E ch = Q2 L 2C J + Q2 R 2C g + Q R V g = e 2 2C Σ (n n x ) 2 + const., -2 G V /G as.5-1 1 n x Coulomb oscillations COQUSY6 p.4

Simple Coupled Device SET1 Vg,1 Box: +V/2 SET2 V/2 V g Vg,2 Transistor measures box charge charge on C c (sawtooth) input for transistor Q box 1..5 Transistor: V g...5 n x 1. V t V t one step of Coulomb staircase (Lehnert et al. PRL 3, Schäfer et al. Physica E 3) COQUSY6 p.5

Overview Motivation Single-electron box/transistor Coupled single-electron devices Model and Technique Real-time diagrammatics Thermoelectric transport Thermal and electrical conductance Quantum fluctuation effects on thermopower Multi-island systems Diagrammatics for complex systems New tunneling processes COQUSY6 p.6

Real-time diagrammatics for an SET (Schoeller and Schön, PRB 94) Hamiltonian: H = H L + H R + H I + H ch + H T = H + H T charge degrees of freedom separated from fermionic degrees: charging energy H ch = e2 2C ( ˆN n x ) 2 H T = r=r,l tunneling ( ) Tkl rn a krn c lne iϕ + h.c. kln e ±iϕ = N ± 1 N Time evolution of e.g. density matrix of charge governed by propagator Q : Y n 1,n 1 n 2,n 2» = Trace n 2 T exp i {z } fermionic d.o.f s Z t t «dt H T (t ) I n 2 n 1 T exp Z t «i dt H T (t ) I n 1 t Keldysh contour H T H T H T H T ^ A(t) 8 t t t 1 2 3 4 t t t COQUSY6 p.7

Dyson-equation Integrating out reservoirs/ contracting tunnel vertices each contraction golden-rule rate: α r± (ω) = deα r f r ± (E +ω)f (E) = ±α r ω µ r e ±β(ω µ r ) 1 with αr = R K 4π 2 R r. 1 1 1 1 1 R L R R R L 1 1 1 1 L L R 1 2 1 1>< 1 diagram with sequential, cotunneling and 3rd order processes Write full propagator as Dyson equation: n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 2 Π n 2 = () Π n 2 n 2 + = () + Π Σ () Π n 2 n 2 n 2 () to calculate: self-energy with free propagator (w/o tunneling) Q () COQUSY6 p.8

Overview Motivation Single-electron box/transistor Coupled single-electron devices Model and Technique Real-time diagrammatics Thermoelectric transport Thermal and electrical conductance Quantum fluctuation effects on thermopower Multi-island systems Diagrammatics for complex systems New tunneling processes COQUSY6 p.9

Electrical and thermal conductance G V =G as Z dω βω/2 sinh βω A(ω) ; G T = G as k B e Z dω (βω/2)2 sinh βω A(ω) V L,TL V R,T R g V = G V G as ; g T = e k B G T G as perturbative expansion to 2nd order in coupling α g V /T = g seq V /T + g V α /T + g V /T + g cot V /T V g Thermoelectric transport: I = G V V + G T δt A(ω) = [C < (ω) C > (ω)]/(2πi) g V.5.4.3.2.1.1 -.1.5.6.7.8.5.6 n.7.8 x gv/t seq cot α g V/T.4 -.4.5.6.7.8.5.6 n.7.8 x -g T.2.1 COQUSY6 p.1

Sequential tunneling = g seq V/T + g α V/T + g V/T + g cot V/T sequential tunneling: g seq V /T = κ β /2 sinh β with κ = 8 < : 1 : V β /2 : T Resonances around degeneracy points n =. g V.5.4.3.2.1.1 -.1.5.6.7.8 gv/t seq cot α g V/T.4.5.6.7.8 -.4 -g T.2.1.5.6 n.7.8 x.5.6 n.7.8 x COQUSY6 p.11

Cotunneling = g seq V/T + g α V/T + g V/T + g cot V/T standard cotunneling: g cot V = α 2π 2 3 (k BT ) 2 g cot T = α 8π 4 15 (k BT ) 3 1 1 1 1 1 1 «2 «2 1 + 1 «1 dominant away from resonance n k B T. virtual occupation of unfavourable charged state. g V.5.4.3.2.1.1 -.1.5.6.7.8.5.6 n.7.8 x gv/t seq cot α g V/T.4 -.4.5.6.7.8.5.6 n.7.8 x -g T.2.1 COQUSY6 p.12

Cotunneling = g seq V/T + g α V/T + g V/T + g cot V/T standard cotunneling: g cot V = α 2π 2 3 (k BT ) 2 g cot T = α 8π 4 15 (k BT ) 3 1 1 1 1 1 1 «2 «2 1 + 1 «1 κ n = 8 < : 1 : V β n /2 : T g cot V /T = κ 1 1 2 φ 1 +κ 2 φ + κ + κ 1 φ φ 1 + 1 φ 1 φ 2 E C g V.5.4.3.2.1.1 -.1.5.6.7.8.5.6 n.7.8 x gv/t seq cot α g V/T.4 -.4.5.6.7.8.5.6 n.7.8 x -g T.2.1 COQUSY6 p.12

Renormalized sequential tunneling = g seq V/T + g α V/T + g V/T + g cot V/T κ = 8 < : 1 : V β /2 : T A( ω) ω Renormalization of coupling: gv α /T = κ β /2 sinh β energy gap: g V /T =» (2φ + φ 1 + φ 1 ) + φ 1 φ 1 E C» β /2 κ (2φ φ 1 φ 1 ) sinh β sequential tunneling but spectral density A(ω) broadened and shifted. renormalized parameters for coupling: α charging energy gap: n COQUSY6 p.13

Renormalization by quantum fluctuations gv α /T = κ β /2 sinh β» (2φ + φ 1 + φ 1 ) + φ 1 φ 1 ; g E V /T = C» β /2 κ (2φ φ 1 φ 1 ) sinh β Quantum fluctuations renormalization of system parameters G(α, ) = G seq ( α, ) + cot. terms expand: G seq ( α, ) = α Gseq (α, ) G + seq (α, ) α renormalization of parameters (perturbative in α ): j α βec = 1 2α 1 + ln α π «βec = 1 2α» 1 + ln π Re Ψ Re Ψ i β «2π i β «ff 2π α and decrease logarithmically by renormalization! (for lowering temperature and increasing coupling α ) many-channel Kondo-physics COQUSY6 p.14

Renormalization effects on G V/T G(α, ) = G seq ( α, ) + cot. terms α and decrease logarithmically by renormalization: α peak structure reduced by quantum fluctuations. closer to resonance; peak broadened by quantum fluct. g V.5.4.3.2.1.1 -.1.5.6.7.8 gv/t seq cot α g V/T.4.5.6.7.8 -.4 -g T.2.1.5.6 n.7.8 x.5.6 n.7.8 x (logarithmic reduction of maximum electrical conductance (König et al. PRL 97) experimentally observed by Joyez et al. PRL 97) COQUSY6 p.15

Thermopower Thermopower: V L,TL V R,T R S = lim δt V δt = G T I= G V V g Thermoelectric transport: I = G V V + G T δt S measures average energy: S = ε et. COQUSY6 p.16

Charging energy gaps determine S E ch E C -1 1 E ch () E ch (1) n = E ch (n + 1) E ch (n) = E C [1 + 2(n n x )] A) at resonance: G V /G as.5 E ch (-1) A B C 1 peak in G V S ε = ε E F cancels B) sequential G V decays off resonance βe C /2 S ε n x S/e k B T 1 C) n x = 1 = -βe C /2-1 1 n x two levels add for G V two levels cancel for S COQUSY6 p.17

Sequential and cotunneling only /e)4 S / (k B 2 2 lower T scales with βn X S / (k B /e) 3 2 1 S seq S cot S 4.5 n.5 X SeT = ε = gseq V /2 + gv cot(k BT ) 2 / g seq V + gcot V S seq = /(2eT ) n x sawtooth sawtooth suppressed by cotunneling S cot = k B e 4π 2 5 1 β 5 1 15 2 25 β (Turek and Matveev, PRB 2) universal low-t behavior S seq+cot = S(β ) How do quantum fluctuations change this picture? COQUSY6 p.18

Renormalization effects on thermopower Low T properties governed by renormalization: 3 S seq lower T Maximum of S S / (k B /e) 2 1 S seq+cot -β max 9 8 our pert. expansion 5 1 15 β charging-energy gap <ε>/.5.48.46.44.42 seq. seq.+ cot. our perturbative expansion.1.1.1 k B T / E C reduced charging-energy gap smaller ε (measures ) 7 seq.+cot..1.1 k B T / E C SeT = ε = gseq V /2 + gv cot(k BT ) 2 / crossover from g seq V to g cot V g seq V + gcot V maximum position system closer to resonance crossover for larger max Further support for renormalization picture! COQUSY6 p.19

Overview Motivation Single-electron box/transistor Coupled single-electron devices Model and Technique Real-time diagrammatics Thermoelectric transport Thermal and electrical conductance Quantum fluctuation effects on thermopower Multi-island systems Diagrammatics for complex systems New tunneling processes COQUSY6 p.2

Multi-island geometries: parallel setup: series setup: ( ) 1 1 ( ) 1 1 L b ( ) 1 ( 1 ) ( ) R t ( ) 1 ( ) 1 ( 1, 1 ) (, 1) ( 1, 1) L ( 2, ) ( 1, ) M (, ) 1 M Trivial changes allow application to different setups! (no changes in calculation of diagrams) COQUSY6 p.21

Algorithm for multi-island systems e.g. parallel setup: charge states: (t, b) ( 1, ) Electrostatics : E ch (t, b) = E t (t t x ) 2 + E b (b b x ) 2 + E coupl. (t t x )(b b x ) generate all diagrams: - start from any charge state - choose vertex positions - choose tunnel junctions and directions of lines - connect vertices - change charge states (t, b) (t, b) (t, b) (t, b) (t, b 1) (t, b) L b R t (t, b) (t 1, b) (t, b) L b (t, b) R t (t, b 1) (t 1, b) (t, b 1) (t, b 1) (t 1, b 1) Calculate value of diagram, contributing to Σ (t,b) (t,b 1) simple rules but plenty of diagrams (in 2nd order 2 11 per charge state) Automatically generate and calculate all diagrams! COQUSY6 p.22

New processes in coupled SETs -before: study building blocks separately link blocks together: e.g., average charge of one SET input for other SET SET 1 full treatment: complete 2nd order theory quantum fluctuations backaction of SET on box new class of processes: double-island cotunneling with energy exchange noise P (E) theory (SET1 noisy environment for SET2) cotunneling SET 2 COQUSY6 p.23

Noise assisted tunneling generator I g limiting cases: small driving detector-cotunneling independent of I g noise assisted tunneling d detector electrostatic interaction P (n g = ) 1 2 P (n g = 1) P (n d = ) 1 P (n d = 1) by noise-assisted tunneling strong driving of generator P (E) Sg Q /E 2 generator noise Z Γ d 1 = Γ( d E ) = α de 1 e P βe ( d E) I D [pa].2.1 noise-assisted tunneling I g (instead of exponential suppression). I D [pa] 8 6 4 2 full 2nd order detector cot. P(E) theory -.5.5 1 V G sd / 2 [mv].5 1 sd V G / 2 [mv] COQUSY6 p.24

Conclusions Higher-order tunneling effects beside cotunneling Thermoelectric properties of an SET Quantum fluctuations renormalize system parameters Electrical and thermal conductance renormalized similarly Thermopower measures average energy logarithmic (Kondo-like) reduction of charging-energy gap General scheme to analyze multi-island systems All 2nd order diagrams computed automatically Detailed study of mutual influence of coupled SETs possible, backaction and quantum fluctuations New tunneling processes exchange energy between islands B. Kubala, G. Johansson, and J. König, Phys. Rev. B 73, 165316 (26). B. Kubala and J. König, Phys. Rev. B 73, 195316 (26). COQUSY6 p.25