Neutrino Shadow Play Neutrino interactions for oscillation measurements

Similar documents
On the measurements of neutrino energy spectra and nuclear effects in neutrino-nucleus interactions

Neutrino-Nucleus Scattering at MINERvA

Neutrino Interaction Physics for Oscillation Analyses

Jan T. Sobczyk. (in collaboration with K. Niewczas, T. Golan, C. Juszczak) (many discussions with Rik Gran) INT Workshop, March 5, 2018

Neutrinos Induced Pion Production in MINERvA

Meson Exchange Current (MEC) model in Neutrino Interaction Generator

Neutrino cross sections for future oscillation experiments

Charged Current Quasielastic Analysis from MINERνA

Neutrino-Nucleus Interactions and Oscillations

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Quasi-Elastic Cross Sections Pittsburgh Neutrino Flux Workshop

Recent results from MINERvA

The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects

Neutrino Cross Sections for (Future) Oscillation Experiments. Pittsburgh Flux Workshop December 7, 2012 Deborah Harris Fermilab

QE or not QE, that is the question

Looking Forward to the Future QE* Needs of Oscillation Experiments

MINERvA - Neutrino-nucleus cross sections are important!

Quasi-Elastic Scattering in MINERvA

How I learned to stop worrying and love multi-nucleon effects (in neutrino-carbon interactions)

Charged Current Inclusive Scattering in MINERnA

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

The MINERnA Experiment

Neutrino-Nucleus Interactions. Ulrich Mosel

Status of experimental neutrino-nucleus scattering at a few GeV

Results from T2K. Alex Finch Lancaster University ND280 T2K

arxiv: v2 [nucl-th] 16 Jul 2018

Long Baseline Neutrinos

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

Electrons for Neutrinos

N u P J-PARC Seminar August 20, 2015

NUINT p2h or not 2p2h? Luis Alvarez Ruso

Status of Neutrino Cross Sections

NEUTRINO INTERACTIONS AT MINERvA. Kevin McFarland University of Rochester QMUL Seminar 14 January 2014

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Neutrino Nucleus Deep Inelastic Scattering at MINERvA

Neutrino interaction systematic errors in MINOS and NOvA

Ulrich Mosel TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAA

Neutrino Responses and the Long Baseline Program

Measurement of the Inclusive Neutrino Charged-Current Interaction Double Differential Cross Sections with the MINERνA Detector

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Recent Results from T2K and Future Prospects

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

PRELIMINARY RESULTS OF NEUTRINO INTERACTIONS STUDY USING GENIE EVENT GENERATOR *

NUCLEAR EFFECTS IN NEUTRINO STUDIES

Semi-inclusive neutrino-nucleus reactions

A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNVERSITY OF MINNESOTA BY. John Gibney Demgen

Neutrino Scattering Results from MiniBooNE and SciBooNE

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Neutrino Flux Requirements for DUNE Leo Aliaga

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Application of the Spectral Function Formalism to Electronand Neutrino-Nucleus Scattering

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Neutrino Cross Sections and Scattering Physics

Challenges in ν-argon scattering and new results from the MicroBooNE experiment

Why understanding neutrino interactions is important for oscillation physics

arxiv: v1 [hep-ex] 30 Nov 2009

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

NEUTRINO ENERGY RECONSTRUCTION IN NEUTRINO-NUCLEUS INTERACTIONS

Effective spectral function for quasielastic scattering on nuclei

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

arxiv: v1 [nucl-th] 10 Apr 2018

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

Analysis of muon and electron neutrino charged current interactions in the T2K near detectors

PoS(FPCP2017)023. Latest results from T2K. Jennifer Teresa Haigh, for the T2K Collaboration

Camillo Mariani Center for Neutrino Physics, Virginia Tech

ECT GENIE FSI overview. Trento 13 July, GENIE FSI strategy features comparisons looking to future

Measurements of the lead-hydrocarbon cross section ratio for charged-current neutrino interactions

Many-Body Theory of the Electroweak Nuclear Response

CCQE and SciBooNE, T2K. 12/3/2013 K Mahn, INT

Nuclear effects in neutrino scattering

Gadolinium Doped Water Cherenkov Detectors

Recent results on soft QCD topics from ATLAS

NEUTRINO CROSS SECTIONS

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

PAVIA. Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci

Some thoughts on neutrino beams for. neutrino cross-section measurements. A. Bueno, S. Navas, A. Rubbia. (ETH Zürich)

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

Unraveling the ν-nucleus Cross-Section

Neutrino interaction at K2K

Sam Zeller Fermilab. PANIC 2011 July 26, 2011

Explorations of Neutrino Flux from the NuMI Beam at Different Positions From the Beam Axis

GENIE models and global fits of neutrino scattering data

FYS3510 Subatomic Physics. Exam 2016

Sensitivity of the DUNE Experiment to CP Violation. Lisa Whitehead Koerner University of Houston for the DUNE Collaboration

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

Resolving the axial mass anomaly

A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab

Experimental results on the atmospheric muon charge ratio

Neutrino Physics at Short Baseline

Neutrino Oscillations and the Matter Effect

Neutrino Physics at Short Baseline

O problemach z opisem produkcji pionów w oddziaªywaniach neutrin

Qweak Transverse Asymmetry Measurements

F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy. Hall C Users Meeting Jan 26, 2007

PoS(Baldin ISHEPP XXII)042

Neutrino Oscillations Physics at DUNE

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

Transcription:

皮影 Shadow play Source: http://www.cnhubei.com/ztmjys-pyts Neutrino Shadow Play Neutrino interactions for oscillation measurements Xianguo LU / 卢显国 University of Oxford INT-18-1a: Nuclear ab initio Theories and Neutrino Physics Seattle, 9 March 2018

THE Universe Matter & very little antimatter (matter-antimatter asymmetry) CP-Symmetry violation (CP violation) 2

Neutrino Oscillation v Flavor states (interaction states) v https://www.nobelprize.org/nobel_prizes/physics/laureates/2015/ Neutrino mass: shift between interaction and propagation states 3

Neutrino Oscillation v https://www.wizardacademy.org/product/pendulum/ v oscillation between flavor states as a function of time 4

Neutrino Oscillation v P(v ) + P(v ) = 1 v oscillation between flavor states as a function of time 5

Neutrino Oscillation v v P(v ) + P(v ) = 1 P(v ) + P(v ) = 1 v v oscillation between flavor states as a function of time If only 2 flavors, same oscillation behavior CP violation not observed 6

Neutrino CP violation v v P(ve) + P(v ) + P(v ) = 1 P(ve) + P(v ) + P(v ) = 1 *3-flavor paradigm *3-flavor paradigm v ve oscillation between flavor states as a function of time ~distance/energy v ve Oscillation property difference CP violation 7

The big picture of neutrino detection in oscillation measurements Nuclear Filter What we measure Event counts Final-state kinematics What we want to know about Number of neutrinos as a function of neutrino energy 8

Neutrino energy in GeV regiem static nucleon target 9

Quasi-elastic scattering (QE) Charged-Current Quasi-Elastic (CCQE) -/ /e/e+ / / e/ e W charged current (CC) l' N N' static nucleon target quasi-elastic (QE) N N' 10

Fermi motion biases E reconstruction nuclear target (bound nucleon) 11

Fermi motion biases E reconstruction Multinucleon correlations: cross section unknown, strong bias to all final-state kinematics initial correlation large relative motion Science 320 (2008) 1476-1478 12

Fermi motion biases E reconstruction Multinucleon correlations: cross section unknown, strong bias to all final-state kinematics initial correlation large relative motion nuclear target (bound nucleons) Science 320 (2008) 1476-1478 In particle-hole excitation: Impulse approximation: independent particles (1p1h) RPA (random phase approximation): sum of 1p1h excitation (over all pairs) screening effect npnh (n 2): sub-leading terms in ph expansion short range correlations, meson exchange currents etc. 13

Fermi motion biases E reconstruction Multinucleon correlations: cross section unknown, strong bias to all final-state kinematics QE-like: absorbed in nucleus final-state interaction (FSI) charged current (CC) l' Resonance production (RES) e nuclear target CC1 + via production e W N QE-like N N' including resonance production (RES) N' followed by absorption 14

Fermi motion biases E reconstruction Multinucleon correlations: cross section unknown, strong bias to all final-state kinematics QE-like: absorbed in nucleus final-state interaction (FSI) FSI energy-momentum transferred in nucleus, possible nuclear emission charged current (CC) l' nuclear target nuclear emission QE-like N N' including resonance production (RES) N' followed by absorption 15

MINERvA Source: http://vmsstreamer1.fnal.gov/vms_site_03/vmsflash/090924minerva/index.htm 16

MINERvA Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159 Scintillator tracker Charged lepton: seen Proton: track 17

MINERvA Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159 Scintillator tracker: Hydrocarbon (CH) target Homogeneous non-magnetized active tracker 18

Energy Diagram by M. Betancourt 19

Rev.Mod.Phys. 84 (2012) 1307-1341 NuMI low energy beam <E > ~ 3 GeV L. Fields 20

Today's topic: -p mesonless production MINOS ND Observables: Transverse kinematics imbalances [XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503] Initial neutron momentum [A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501] 11 C* recoil Fermi motion n 21

A brief history of Shadow Art https://en.wikipedia.org/wiki/cave_painting Cave of Pettakere, Bantimurung district (kecamatan), South Sulawesi, Indonesia. Hand stencils estimated between 35,000-40,000 BP 22

A brief history of Shadow Art https://en.wikipedia.org/wiki/cave_painting Cueva de las Manos located Perito Moreno, Argentina. The art in the cave dates between 13,000-9,000 BP 23

A brief history of Shadow Art https://zh.wikipedia.org/wiki/%e7%9a%ae%e5%bd%b1%e6%88%b2 Traditional Chinese movie 24

A brief history of Shadow Art http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/ Japanese modern art 25

A brief history of Shadow Art http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/ Japanese modern art 26

Transverse kinematic imbalances a neutrino shadow play 27

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html To make Neutrino Shadow Play, we need beam of light screen 28

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html To make Neutrino Shadow Play, we need beam of light accelerator screen 29

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html To make Neutrino Shadow Play, we need beam of light accelerator screen transverse plane 30

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html Static nucleon target To make Neutrino Shadow Play, we need beam of light accelerator screen transverse plane 31

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html Nuclear target To make Neutrino Shadow Play, we need beam of light accelerator screen transverse plane 32

Transverse kinematic imbalances a neutrino shadow play Source: http://zhejiangpiying.sokutu.com/tupian.html Nuclear target To make Neutrino Shadow Play, we need beam of light accelerator screen transverse plane 33

Transverse kinematic imbalances a neutrino shadow play Static nucleon target Convolution of Fermi motion and intranuclear momentum transfer due to FSI, resonance production, 2p2h etc. Nuclear target XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503 34

Transverse kinematic imbalances a neutrino shadow play Convolution of Fermi motion and intranuclear momentum transfer due to FSI, resonance production, 2p2h etc. Nuclear target XL, L. Pickering, S. Dolan et al., Phys.Rev. C94 (2016) no.1, 015503 35

EXTENSION: RADICAL SOLUTION TO NUCLEAR EFFECT PROBLEM 36

Lepton-proton interaction 3 charged particles: l p l' X Y Leading order realization in standard model: XL et al., Phys.Rev. D92 (2015) no.5, 051302 37

Lepton-proton interaction 3 charged particles: l p l' X Y Leading order realization in standard model: XL et al., Phys.Rev. D92 (2015) no.5, 051302 38

Lepton-proton interaction 3 charged particles: l p l' X Y Leading order realization in standard model: XL et al., Phys.Rev. D92 (2015) no.5, 051302 39

Lepton-proton interaction 3 charged particles: l p l' X Y Leading order realization in standard model: XL et al., Phys.Rev. D92 (2015) no.5, 051302 40

Phys.Rev. D92 (2015) no.5, 051302 Double-transverse momentum imbalance ptt H: 0 Heavier nuclei: irreducible symmetric broadening by Fermi motion O(200 MeV) further by FSI CHn: Hydrogen shape is only detector smearing. With good detector resolution, hydrogen yield can be extracted. With very good res., event-by-event selection of -H interaction is possible. XL et al., Phys.Rev. D92 (2015) no.5, 051302 41

Pure hydrogen Technical requirement: bubble chamber (historical: 73, 79, 78, 82, 86) Chin. Phys. C 38, 090001 (2014) H2 Safety issue: explosive Since the use of a liquid H2 bubble chamber is excluded in the ND hall due to safety concerns,... [FERMILAB-PUB-14-022] Neutrino interactions on hydrogen: In the last ~30 years there has been no new measurement Nuclear-effect independent measurement of neutrino energy 42

Extracting neutrino-hydrogen events from CH targets 2 better tracking res. arxiv:1512.09042 Toy simulation of T2K performance T2K neutrino flux on CH target Realistic detector resolution 43

Application in DUNE Slide from Hongyue Duyang U. of South Carolina https://indico.fnal.gov/event/16205/contribution/3/material/slides/0.pdf 44

Application in DUNE Slide from Hongyue Duyang U. of South Carolina Background shape: constrained by multiple nuclear targets, especially carbon (graphite) https://indico.fnal.gov/event/16205/contribution/3/material/slides/0.pdf 45

END OF EXTENSION BACK TO NUCLEAR EFFECT MEASUREMENT 46

A more general analysis of kinematic imbalance Transverse: Longitudinal: New variable: Neutrino energy is unknown (in the first place), equations are not closed. A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501 47

A more general analysis of kinematic imbalance Assuming exclusive -p-a' final states Use energy conservation to close the equations Transverse: Longitudinal: New variable: pn: recoil momentum of the nuclear remnant Neutrino energy is unknown (in the first place), equations are not closed. A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501 48

A more general analysis of kinematic imbalance Assuming exclusive -p-a' final states Use energy conservation to close the equations Transverse: Longitudinal: New variable: pn: recoil momentum of the nuclear remnant Neutrino energy is unknown (in the first place), equations are not closed. For CCQE, A' = 11C* No more unknowns pn: neutron Fermi motion 11 C* recoil Fermi motion n A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501 49

Signal definition: Charged current One muon and at least one proton in the restricted final-state phase space No mesons Measurement: Data sample: NuMI low energy neutrino data, 3.28 1020 POT Interaction target: tracker (mostly CH) Event selection Background estimation and subtraction Unfolding Efficiency correction Flux integrated cross section as results Focus today 50

Simulation: GENIE [Nucl.Instrum.Meth. A614 (2010) 87-104] Nominal: version 2.8.4 global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)] ha FSI [AIP Conf.Proc. 1405 (2011) 213-218] No-FSI: Nominal without FSI 51

Simulation: GENIE [Nucl.Instrum.Meth. A614 (2010) 87-104] Nominal: version 2.8.4 global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)] ha FSI [AIP Conf.Proc. 1405 (2011) 213-218] No-FSI: Nominal without FSI MnvGENIE-v1: GENIE MINERvA Tune (v1) [only 2p2h relevant for this analysis] Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503] Non-resonance pion production scaled down by 75% [Phys.Rev. D90 (2014) no.11, 112017] Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no.11, 113007, arxiv:1601.02038] tuned to MINERvA inclusive data significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802] Phys.Rev.Lett. 116 (2016) 071802 Science 320 (2008) 1476-1478 representing energy transfer from the neutrino to the target 52

Simulation: GENIE [Nucl.Instrum.Meth. A614 (2010) 87-104] Nominal: version 2.8.4 global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)] ha FSI [AIP Conf.Proc. 1405 (2011) 213-218] No-FSI: Nominal without FSI MnvGENIE-v1: GENIE MINERvA Tune (v1) [only 2p2h relevant for this analysis] Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503] Non-resonance pion production scaled down by 75% [Phys.Rev. D90 (2014) no.11, 112017] Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no.11, 113007, arxiv:1601.02038] tuned to MINERvA inclusive data significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802] Detector simulation: GEANT4 (4.9.2) GENIE used in other experiments (e.g. NOvA, T2K, BooNE, DUNE) This analysis: GENIE MINERvA Tune (v1) used in cross section extraction 53

RESULTS: Flux integrated cross section 54

Single-Particle Kinematics Muon momentum, angle Good description by GENIE MINERvA Tune (v1) All predictions have same shape 55

Single-Particle Kinematics Muon momentum, angle Proton momentum, angle GENIE Nominal and No-FSI have different shape GENIE MINERvA Tune (v1) excess at high angle 56

FSI decomposition in mesonless proton production: Proton FSI: Non-interacting (no change of energy and direction of the proton) Acceleration: energy of proton increased after FSI Deceleration: energy of proton decreased after FSI Pion FSI: pion absorption charged current (CC) l' charged current (CC) l' nuclear target nuclear target nuclear emission 57

Single-Particle Kinematics Muon momentum, angle Proton momentum, angle Proton FSI acceleration localized at high angle Pionless resonant production dominates low angle 58

NUCLEAR EFFECT DIAGNOSTICS 59

A more general analysis of kinematic imbalance Assuming exclusive -p-a' final states Use energy conservation to close the equations Transverse: Longitudinal: New variable: pn: recoil momentum of the nuclear remnant Neutrino energy is unknown (in the first place), equations are not closed. For CCQE, A' = 11C* No more unknowns pn: neutron Fermi motion 11 C* recoil Fermi motion n A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501 60

Nuclear Effect Diagnostics CCQE with Fermi motion Fermi Gas model prediction pn is Fermi motion magnitude QE peak GENIE No-FSI 11 C* recoil Bodek-Ritchie tail Fermi motion n 61

Nuclear Effect Diagnostics CCQE with Fermi motion pn is Fermi motion magnitude QE peak GENIE No-FSI p-fsi Non-interacting 11 C* recoil Fermi motion n 62

Nuclear Effect Diagnostics CCQE with Fermi motion Fermi Gas model prediction pn is Fermi motion magnitude QE peak GENIE No-FSI p-fsi Non-interacting 11 C* recoil Bodek-Ritchie tail Fermi motion n QE peak dominated by CCQE without FSI Direct constraint of Fermi motion 63

Fermi motion only For CCQE, A' = 11C* No more unknowns pn: neutron Fermi motion T is Fermi motion direction isotropic 64

Nuclear Effect Diagnostics CCQE with Fermi motion Fermi motion only T is Fermi motion direction isotropic GENIE No-FSI 65

Nuclear Effect Diagnostics CCQE with Fermi motion Fermi motion only T is Fermi motion direction isotropic GENIE No-FSI p-fsi Non-interacting 66

Nuclear Effect Diagnostics CCQE with Fermi motion Fermi motion only T is Fermi motion direction isotropic GENIE No-FSI p-fsi Non-interacting Baseline for all non-fermi motion effects Factor out Fermi motion uncertainty Complementary to pn 67

pt (nuclear effects) boosting outgoing proton With full nuclear effects Intranuclear momentum transfer pt (nuclear effects) dragging outgoing proton Baseline for all non-fermi motion effects Factor out Fermi motion uncertainty Complementary to pn 68

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration pt (nuclear effects) dragging outgoing proton Deceleration at large T 69

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration pt (nuclear effects) boosting outgoing proton Deceleration at large T Acceleration at both small and (due to transverse projection) large T 70

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration pt (nuclear effects) boosting outgoing proton Only acceleration can enter small T Deceleration at large T Acceleration at both small and (due to transverse projection) large T 71

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Acceleration to the left of QE peak Strongly distort QE peak 11 C* recoil Fermi motion n 72

A more general analysis of kinematic imbalance Assuming exclusive -p-a' final states Use energy conservation to close the equations Transverse: Longitudinal: New variable: pn: recoil momentum of the nuclear remnant Neutrino energy is unknown (in the first place), equations are not closed. For RES, DIS, 2p2h, no longer exclusive -p-a' final states 11 C* recoil Fermi motion n Fermi motion Intranuclear momentum transfer A. Furmanski, J. Sobczyk, Phys.Rev. C95 (2017) no.6, 065501 73

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Pionless resonant production, pion absorption FSI, and 2p2h pn: smeared pt beyond QE peak tail -FSI Absorption 11 C* recoil Fermi motion p small p large n Pion production and 2p2h process: strong intra-nuclear momentum transfer due to momentum sharing with proton 74

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Pionless resonant production, pion absorption FSI, and 2p2h pn: smeared pt beyond QE peak tail -FSI Absorption 2p2h (= MnvGENIE-v1 GENIE Nominal) 11 C* recoil Fermi motion p small p large n Pion production and 2p2h process: strong intra-nuclear momentum transfer due to momentum sharing with proton 75

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Pionless resonant production, pion absorption FSI, and 2p2h GENIE describes the tail reasonably well due to large contribution from 2p2h tuned to MINERvA inclusive measurements pn: smeared pt beyond QE peak tail -FSI Absorption 2p2h (= MnvGENIE-v1 GENIE Nominal) 11 C* recoil Fermi motion p small p large n Pion production and 2p2h process: strong intra-nuclear momentum transfer due to momentum sharing with proton 76

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Pionless resonant production, pion absorption FSI, and 2p2h pt (nuclear effects) dragging outgoing proton Proton momentum shared by others, decelerated large T region -FSI Absorption 77

Nuclear Effect Diagnostics CCQE with Fermi motion FSI deceleration vs. acceleration Pionless resonant production, pion absorption FSI, and 2p2h pt (nuclear effects) dragging outgoing proton Proton momentum shared by others, decelerated large T region -FSI Absorption 2p2h (= MnvGENIE-v1 GENIE Nominal) 78

ADVANCED TOPICS: GENIE FSIs 79

Advanced Topics: GENIE FSIs (pre2015) ha: effective model, include elastic component in intranuclear scattering, used in GENIE MINERvA Tune (v1) ha2015: removed elastic component, replacing ha in MnvGENIE-v1-hA2015 No p-fsi acceleration 80

Advanced Topics: GENIE FSIs (pre2015) ha: effective model, include elastic component in intranuclear scattering, used in GENIE MINERvA Tune (v1) ha2015: removed elastic component, replacing ha in MnvGENIE-v1-hA2015 No p-fsi acceleration QE peak not distorted, but much narrower 81

Advanced Topics: GENIE FSIs (pre2015) ha: effective model, include elastic component in intranuclear scattering, used in GENIE MINERvA Tune (v1) ha2015: removed elastic component, replacing ha in MnvGENIE-v1-hA2015 hn2015: full cascades + Oset, replacing ha in MnvGENIE-v1-hN2015 ha2015 and hn2015 difference in Large (concentrated) T p tail (diluted) n 82

ADVANCED TOPICS: NUWRO 83

Simulation: GENIE [Nucl.Instrum.Meth. A614 (2010) 87-104] Nominal: version 2.8.4 global Fermi Gas (RFG) model with Bodek-Ritchie (BR) tail [Phys. Rev. D 23, 1070 (1981)] ha FSI [AIP Conf.Proc. 1405 (2011) 213-218] No-FSI: Nominal without FSI MnvGENIE-v1: GENIE MINERvA Tune (v1) [only 2p2h relevant for this analysis] Added Random Phase Approximation (RPA) [Phys.Rev. C70 (2004) 055503] Non-resonance pion production scaled down by 75% [Phys.Rev. D90 (2014) no.11, 112017] Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012), Phys.Rev. D88 (2013) no.11, 113007, arxiv:1601.02038] tuned to MINERvA inclusive data significant enhancement in small 4-momentum transfer region [Phys.Rev.Lett. 116 (2016) 071802] Simulation: NuWro [Phys.Rev. C86 (2012) 015505] Version: 11q Local Fermi Gas (LFG) or Spectral Function (SF) [Benhar et al., Nucl.Phys. A579 (1994) 493-517] FSI: intranuclear cascades of hadronic interactions + Oset model [Nucl.Phys. A484 (1988) 557-592] Valencia 2p2h [Nieves et al., Phys.Lett. B707 (2012) 72-75, Phys. Rev. C 86, 015504 (2012)] 84

Advanced Topics: NuWro Fermi motion Fermi motion p small (intranuclear momentum transfer) p large SF describes Fermi motion very well 85

Advanced Topics: NuWro Fermi motion Resonance / 2p2h strength p small (intranuclear momentum transfer) p large SF describes Fermi motion very well Resonance / 2p2h lacks of local strength 86

ADVANCED TOPICS: COMPARISON TO T2K 87

Advanced Topics: Comparison to T2K [arxiv:1802.05078] *same target, slight difference in signal phase space definition T Rev.Mod.Phys. 84 (2012) 1307-1341 arxiv:1802.05078 (regularized) NuMI LE <E > ~ 3 GeV L. Fields MINERvA-T2K difference mainly due to RES: Very small resonance contribution at T2K 88

Advanced Topics: Comparison to T2K [arxiv:1802.05078] *same target, slight difference in signal phase space definition T Rev.Mod.Phys. 84 (2012) 1307-1341 NuMI LE <E > ~ 3 GeV L. Fields MINERvA-T2K difference mainly due to RES Fermi motion (isotropic) baseline consistent 89

Advanced Topics: Comparison to T2K [arxiv:1802.05078] *same target, slight difference in signal phase space definition T pt Only differ by longitudinal momentum imbalance pn has better resolution 90

Advanced Topics: Comparison to T2K [arxiv:1802.05078] *same target, slight difference in signal phase space definition T pt Rev.Mod.Phys. 84 (2012) 1307-1341 NuMI LE <E > ~ 3 GeV L. Fields MINERvA-T2K difference mainly due to RES The QE peaks are consistent 91

Summary and Outlook 92

Summary and Outlook 93

Summary and Outlook Muon-proton mesonless production at MINERvA 2014: LE neutrino beam, CH target 2016: LE neutrino beam, CH + nuclear targets This analysis: LE neutrino beam, CH (3.28 1020 POT) 20 Future: medium energy neutrino beam CH + nuclear targets (E ~ 6 GeV, 12 10 POT) In this analysis, we have shown Single-particle kinematics (muon and proton momentum and angle) Transverse kinematic imbalances (, p ) T T Initial neutron momentum (p ) n 11 C* recoil Fermi motion n 94

Summary and Outlook Muon-proton mesonless production at MINERvA 2014: LE neutrino beam, CH target 2016: LE neutrino beam, CH + nuclear targets This analysis: LE neutrino beam, CH (3.28 1020 POT) 20 Future: medium energy neutrino beam CH + nuclear targets (E ~ 6 GeV, 12 10 POT) In this analysis, we have shown Single-particle kinematics (muon and proton momentum and angle) Transverse kinematic imbalances (, p ) T T Initial neutron momentum (p ) n By rearranging final-stat kinematics, nuclear effects can be diagnosed: pn strong constraint to Fermi motion T factors out Fermi motion uncertainty and have direct sensitivity to FSI 95

Summary and Outlook Muon-proton mesonless production at MINERvA 2014: LE neutrino beam, CH target 2016: LE neutrino beam, CH + nuclear targets This analysis: LE neutrino beam, CH (3.28 1020 POT) 20 Future: medium energy neutrino beam CH + nuclear targets (E ~ 6 GeV, 12 10 POT) In this analysis, we have shown Single-particle kinematics (muon and proton momentum and angle) Transverse kinematic imbalances (, p ) T T Initial neutron momentum (p ) n By rearranging final-stat kinematics, nuclear effects can be diagnosed: pn strong constraint to Fermi motion T factors out Fermi motion uncertainty and have direct sensitivity to FSI Interesting observation: GENIE MINERvA Tune (v1) Describes data well to first order Critical component is Valencia 2p2h tuned to MINERvA inclusive data NuWro SF provides very good description of data 96

Summary and Outlook Muon-proton mesonless production at MINERvA 2014: LE neutrino beam, CH target 2016: LE neutrino beam, CH + nuclear targets This analysis: LE neutrino beam, CH (3.28 1020 POT) 20 Future: medium energy neutrino beam CH + nuclear targets (E ~ 6 GeV, 12 10 POT) In this analysis, we have shown Single-particle kinematics (muon and proton momentum and angle) Transverse kinematic imbalances (, p ) T T Initial neutron momentum (p ) n New developments Transverse kinematic imbalances New system to solve the nuclear effect problem in neutrino interaction most relevant for oscillation measurements Radical approach double transverse kinematic imbalance [Phys. Rev. D 92, 051302(R)] First measurement of Furmanski-Sobczyk initial neutron momentum diagnostic power Practically efficient way to select pure CCQE events (beyond the scope of this talk) 97

谢谢! Source: http://www.cnhubei.com/ztmjys-pyts 98

BACKUP 99

Selected Sample Data-MC comparison at reconstructed level after sideband fit GENIE MINERvA Tune (v1) describes data well (to first order) Large concentration of pure QE at high angle GENIE excess above data beyond 60 deg (see discussion later slides) 100

Selected Sample Data-MC comparison at reconstructed level after sideband fit GENIE MINERvA Tune (v1) describes data well (to first order) Depletion at small T GENIE excess at T 180 deg. 101

Selected Sample 11 C* recoil Data-MC comparison at reconstructed level after sideband fit Fermi motion n Strong separation of pure QE Double-peak structure, very strong in GENIE 102

103

104

66.4 deg arxiv:1802.05078 105

END 106