To prepare for this lab, you should read the following sections of the text: Sections 3.4, 11.3, and 12.1 OVERVIEW

Similar documents
Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L. Closed at both ends

Laboratory 4: Wave Motion and Resonance

Physics 248 Spring 2009

STANDING WAVES AND RESONANCE

Resonance on Air Column

Superposition and Standing Waves

Mechanical and Acoustical Resonators

Science Lab #1. Standing Waves

AP Physics Problems Simple Harmonic Motion, Mechanical Waves and Sound

Physics 202 Homework 7

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

Lecture 28 March

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

16 SUPERPOSITION & STANDING WAVES

12.1 Homework Set 1a Solutions

AP Waves/Optics ~ Learning Guide

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag?

Chapter 18 Solutions

Wave Motions and Sound

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

VII. Vibrations, Waves and Sound. Concept Review. Conflicting Contentions. 1. Vibrating Strings 2. The Speed of Sound in Metal 3.

6: STANDING WAVES IN STRINGS

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

WAVES. 1.) A wave is a disturbance that moves through a medium. (You can t have water waves without water!)

PHYSICS. Chapter 16 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Contents. Lehman College Department of Physics and Astronomy. Lab manual for PHY 141 Sound, speech and music 1 PENDULUM EXPERIMENT 3

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Superposition & Interference

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

SPRING 2004 Final Exam, Part A

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

Nicholas J. Giordano. Chapter 13 Sound

change in distance change in time

Answer: 101 db. db = 10 * log( 1.16 x 10-2 W/m 2 / 1 x W/m 2 ) = 101 db

PHYS Summer Professor Caillault Homework Solutions. Chapter 14

Sound Waves. Sound waves are longitudinal waves traveling through a medium Sound waves are produced from vibrating objects.

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Sound. Measure the speed of sound in air by means of resonance in a tube; Measure the speed of sound in a metal rod using Kundt s tube.

Physics 25 Section 2 Exam #1 February 1, 2012 Dr. Alward

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Moving Bodies---The Marble Luge Run

Equipotential and Electric Field Mapping

Physics 7Em Midterm Exam 1

Periodic Functions and Waves

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

NARAYANA JUNIOR COLLEGE

Applet Exercise 1: Introduction to the Virtual Lab and Wave Fundamentals

Physics 221: Optical and Thermal Physics Exam 1, Sec. 500, 14 Feb Please fill in your Student ID number (UIN): IMPORTANT

Final Exam Notes 8am WednesdayDecember 16, 2015 Physics 1320 Music & Physics Prof. Tunks & Olness

Worksheet #12 Standing waves. Beats. Doppler effect.

Unit 4 Waves and Sound Waves and Their Properties

Oscillations - AP Physics B 1984

FIFTH MIDTERM -- REVIEW PROBLEMS

VELOCITY OF SOUND. Apparatus Required: 1. Resonance tube apparatus

UIC PHYSICS 105 Fall 2014 Practice Final Exam. UIC Physics 105. Practice Final Exam. Fall 2014 Best if used by December 7 PROBLEM POINTS SCORE

PHYSICS 220. Lecture 21. Textbook Sections Lecture 21 Purdue University, Physics 220 1

Lab 10: Harmonic Motion and the Pendulum

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

PHYSICS 220 LAB #5: WORK AND ENERGY

Standing Waves (stationary waves) interference, nodes, antinodes, wavelength is twice the node-to-node distance

A longitudinal wave travels through a medium from left to right.

PHYS 1111L - Introductory Physics Laboratory I

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHY 103 Impedance. Segev BenZvi Department of Physics and Astronomy University of Rochester

Solution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B.

Physics 2310 Lab #3 Driven Harmonic Oscillator

PHY 103 Impedance. Segev BenZvi Department of Physics and Astronomy University of Rochester

The Trumpet: Demystified Using Mathematics

Question Sheet for Laboratory 3: E-1: Electrostatics

Physics 9 Fall 2009 Homework 12 - Solutions

SIMPLE HARMONIC MOTION

Waves Standing Waves and Sound

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

The Pendulum. Goals and Introduction

PHYS 2211L - Principles of Physics Laboratory I

Exercises The Origin of Sound (page 515) 26.2 Sound in Air (pages ) 26.3 Media That Transmit Sound (page 517)

Final Practice Problems

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

Chapter 2 SOUND WAVES

Waves Part 3A: Standing Waves

PHYSICS 111 SPRING EXAM 3: April 12, 2016; 8:15pm - 9:45pm

Test 3 Preparation Questions

LABORATORY IV OSCILLATIONS

Sound, acoustics Slides based on: Rossing, The science of sound, 1990, and Pulkki, Karjalainen, Communication acoutics, 2015

Physics I Spring Final Review

Hybrid Activity: Measuring with Metric. Introduction: Standard Metric Units. Names

Page # Physics 103: Lecture 26 Sound. Lecture 26, Preflight 2. Lecture 26, Preflight 1. Producing a Sound Wave. Sound from a Tuning Fork

Simple Harmonic Motion

CHM 130LL: The Metric System

Experiment IV. To find the velocity of waves on a string by measuring the wavelength and frequency of standing waves.

Physics 101: Lecture 22 Sound

13.3 Interference and Superposition. Interference and Superposition Constructive Interference Destructive Interference Standing Waves

CHAPTER 11 VIBRATIONS AND WAVES

Lecture 14 1/38 Phys 220. Final Exam. Wednesday, August 6 th 10:30 am 12:30 pm Phys multiple choice problems (15 points each 300 total)

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS

Oscillations and Waves

Transcription:

Section: Monday / Tuesday (circle one) Name: Partners: Total: /35 PHYSICS 107 LAB #4: WIND INSTRUMENTS: WAVES IN AIR Equipment: Thermometer, function generator, two banana plug wires, resonance tube with speaker, small cups (for bailing) cardboard resonance tube, Isopropyl & paper towels (cleaning resonator mouth), jug, speaker, large plastic measuring cup, ruler, meter stick, microphone, o scope. OBJECTIVES 1. To observe the phenomenon of resonance for sound waves in air. 2. To explore the conditions for resonance in a tube and a Helmholtz resonator. READINGS To prepare for this lab, you should read the following sections of the text: Sections 3.4, 11.3, and 12.1 OVERVIEW Tube A tube of resonating air is central to two families of instruments, brass and woodwinds; more generally, the resonance cavities of the stringed instruments play important roles in coloring their tones by selectively amplifying some frequencies over others. In this lab, we will study the relationship between the modes of air-filled resonators and the resonating cavities dimensions. The speed of a traveling wave is related to its frequency and wavelength by v f. The speed depends on the medium in which the wave is traveling. The speed of sound in air depends most strongly on the temperature; factors such as changes in humidity (i.e., subtle changes in the air s composition) don t affect it as much. If the temperature is measured in Celsius, the theoretical value of the speed of sound in air is approximately v 344 m 0.6 m * T 20 C. s Closed at one end A standing wave is when the wave crests don t appear to travel along the medium (string, or air). Instead, points of no displacement (nodes) stay put and the crests (antinodes) oscillate between maximum and minimum. For sound waves in a pipe, a closed end will be a node of displacement (the air can t be pushed through the pipe s capped end.) and an open end will be an s C

antinode. A wave fits these conditions only if (quite nearly) an odd integer number of quarter-wavelengths fit in the tube: L n 4, where n = 1,3,5. When this condition for a standing wave is met, there will be a resonance and the amplitude of the wave will become large. For sound waves this means a louder sound. Open at both ends Most wind instruments would qualify as being open at one end (the bell) and closed at the other (the mouth piece); however, there are a couple of exceptions some organ pipes and the flute are open at both ends. For these, the air is extra free to move at both ends making these displacement antinodes. A wave fits these conditions only if (quite nearly) an integer number of half-wavelengths fit in the tube: L n 2, where n = 1,2,3,. When this condition for a standing wave is met, there will be a resonance and the amplitude of the wave will become large. For sound waves this means a louder sound. r l Helmholtz Resonator A typical example of a Helmholtz Resonator is a jug or soda pop bottle. As you re quite familiar, blowing across its top produces a characteristic tone, indicating that the air in the bottle prefers to oscillate, or resonates, at a particular frequency. A qualitative mechanical analogy is that the air in the bottle s neck is like a mass sitting on the spring / cushion of the air in the bottle s volume. Blowing across the moth of the bottle produces a complicated disturbance in the air pressure at the mouth which sets the mass bouncing. For the bottle, the natural frequency is v f Helmholtz 2 a Vl where v is the speed of sound in air, a is the area of 2 the mouth ( r ), l is the length of the neck, and V is main volume (excluding the neck) of the bottle. The exact shape of the bottle affects the parameter a form factor, it is typically in the range of 0.5 to 1 which speaks to how much air above and below the neck should be considered part of the mass that bounces on the air spring. Page 2 Lab #4: Standing Waves in Air

Experiment: Speed of Sound in Tube Closed at one End With a speaker playing a constant frequency (f) mounted at the top of a column of air, you will vary the column s length and identify the lengths for which the column resonates (the sound gets louder). From this you will determine the wavelength corresponding to frequency of sound, which will be used find the wave speed. A. The apparatus you will use is pictured to the right. Slide the metal reservoir as high up as it will go. Slowly fill the reservoir until the glass tube is nearly full (within about 10 cm). Be sure that there are no kinks in the rubber tubing. The water level in the glass tube can be adjusted by raising or lowering the supply tank. B. Position the speaker over the glass tube and connect it to the function generator. Make sure the function generator is set to produce a sinusoidal wave. Set the frequency to about 650 and turn the speaker on at a low volume (0.05 Volts should do.) f = C. Keeping the frequency constant, slowly lower the water level until the first resonance is reached and the sound becomes much louder. Determine the position of the resonance by slightly raising and lowering the water level until you are sure that the sound is at maximum intensity. Enter this into the table on the next page. Warning: the speaker does not produce a pure tone, so you may hear fainter and higher pitched resonances you should ignore these. D. Repeat the above procedure for the entire length of the glass tube and enter the results in the first column of the table below. Be careful to increase the length of the air column so that you don t miss a resonance! (Note: Make sure the reservoir does not overflow. At some point, you ll need to remove some water from it.) Page 3 Lab #4: Standing Waves in Air

/4 pts Length of air column (m) Fraction of wavelengths in column* shortest = 1_ /4 = /4 = /4 longest = /4 *See the sketches you re to produce below. Wavelength (m) E. Sketch the water level and trace over the appropriate length of the dashed standing waves for the displacement of the air for each of the resonances. (The first one is done for you.) In the table above, enter the number of wavelengths or fractions of wavelengths are in each standing wave. (The first one is done for you.) displacement displacement displacement displacement /6 pts 1 node 1 2 3 4 F. Take the average of all of your measurements for the wavelength. avg = m Page 4 Lab #4: Standing Waves in Air

You ll compare your measured wavelength with that expected, given the frequency and the expected speed of sound in air. G. Measure the temperature of the room in Celsius (the instructor should have a thermometer out that s measuring this.) TC = C Question: Based on the equation given on page 1, what s the theoretically expected speed of sound? v = m/s Question: Now, since v f, given the frequency you used (recorded on page 3), what wavelength would you theoretically expect the sound waves to have? th = m Question: Finally, how does your average experimental measurement of the wavelength compare with that theoretical value (% difference)? Show your work. If they differ by much more than 10% find and fix your mistake. avg theory % difference = 100% theory Experiment: Speed of Sound in Tube Open at Both Ends You ll explore the relation between tube length and resonance frequency for a tube that s open on both ends. A. Setup. You ll use most of the same apparatus as before, but rather than a glass tube with water that can be raised or lowered, a pair of nested cardboard tubs that can be lengthened or shrunk like a telescope. Swing the microphone away from the glass tube so you can hold the cardboard one below it. Page 5 Lab #4: Standing Waves in Air

B. You ll fill in the table below. a. For each frequency, dial in the frequency, then hold the tube beneath the speaker and adjust its length until it resonates (the sound becomes appreciably louder), measure the length of the tube. b. At resonance, the tube should be holding half a wavelength; actually, the sound wave extends about 2cm beyond each open end, so to calculate the wavelength by adding 4cm and then multiplying by two. c. Given that the wave speed is 344m/s for sound in air, calculate the wavelength you d expect for sound of this frequency. d. Compare find the percent difference. frequency f (Hz) Length L (m) Wavelength measured (m) (L + 0.04)*2 Wavelength expected 344 (m) m 2 f Percent difference /3 pts 525 500 475 Question: How do the expected wavelengths compare with those you ve determined by assuming that half a wavelength fits in the open tube (within 10%)? Experiment: Helmholtz Resonator form factor You ll experimentally determine a jug s Helmholtz resonance frequency, from that and the predicted equation for it, you ll determine the form factor,, then you ll test your value with a half-filled jug. 1. Determine a Helmholtz resonator s resonance frequency by ear. Blow across the mouth of a Helmholtz resonator and simultaneously drive a speaker with a function generator and dial its frequency until it matches pitch with the resonator. Note: like a piano tuner, you should hear the slow pulsing of beats when you get close the slower they are, the closer the two frequencies match. Page 6 f ear = Hz Physics 221 Lab #1: Standing Waves on Strings & in Air

2. Determine the frequency directly. Let s see how good a job you did by ear use the microphone connected to the o scope to measure the frequency. a. Setup. As usual, this should already have been done by your instructor, but worth glancing over to make sure. i. Microphone plugged into channel 1 of the o scope ii. Channel 1 s scale set to 5.0 mv per division and the time scale set to 5.0 ms. iii. O scope set to read out Channel 1 s frequency (left side of the screen) iv. Acquire set to average over four snapshots before displaying. b. Recall, you can freeze the o scope by pushing the run/stop button in the upper right corner, and the frequency measurement should be displayed at the right side of the screen. f o scope = Hz Question: How close were you? What s the percent difference between the frequency you determined by listening for beats and the frequency that the o scope reports? (should be within 10%) 3. Determine the form factor for your resonator. Use the ruler to measure the length of your resonator s neck and the radius of its mouth and determine its area l = m r = m a = r 2 = m 2 a. Determine the resonator s volume (by determining the volume of water it holds) Poor water in up to the base of the neck, then poor the water into a measuring cup. Note: 1 Liter = 0.001 m 3. V = m 3 Page 7 Physics 107 Lab #4: Waves in Air

b. Use your measured values and the speed of sound (page 5) to solve v a f 2 Vl the volume.) for the form factor,. (remember, v is the speed of sound, V is = 4. Test your value. If you got it right, then changing the effective volume of the resonator should change its resonance frequency in a predictable way. So, change the effective volume of your resonator by roughly a factor of 2 by adding water. Predict and measure the new frequency (again, by blowing across and tuning a function generator until you hear beats). V new = m 3 f predicted = Hz f measured = Hz Question: How do these compare; that is, what s their percent difference? Page 8 Physics 107 Lab #4: Waves in Air