GATE SOLUTIONS E N G I N E E R I N G

Similar documents
CIVIL ENGINEERING

ESE TOPICWISE OBJECTIVE SOLVED PAPER I

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

2012 MECHANICS OF SOLIDS

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

MECHANICAL ENGINEERING

ESE TOPIC WISE OBJECTIVE SOLVED PAPER II

PES Institute of Technology

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

MECHANICAL ENGINEERING

3 Hours/100 Marks Seat No.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

UNIT I SIMPLE STRESSES AND STRAINS

Sub. Code:

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Downloaded from Downloaded from / 1

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

Chapter 3. Load and Stress Analysis

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

QUESTION BANK ENGINEERS ACADEMY. PL 4Ed d. Ed d. 4PL Ed d. 4Ed d. 42 Axially Loaded Members Junior Engineer

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

STRESS, STRAIN AND DEFORMATION OF SOLIDS

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Mechanics of Materials Primer

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

MECHANICS OF SOLIDS. (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University

Exercise: concepts from chapter 8

For more Stuffs Visit Owner: N.Rajeev. R07

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

Advanced Structural Analysis EGF Section Properties and Bending

Structural Analysis I Chapter 4 - Torsion TORSION

CHAPTER 4: BENDING OF BEAMS

N = Shear stress / Shear strain

Mechanics of Structure

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Lecture 8. Stress Strain in Multi-dimension

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

Cork Institute of Technology. Autumn 2007 Mechanics of Materials (Time: 3 Hours)

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

Structural Analysis. For. Civil Engineering.

Q. 1 Q. 5 carry one mark each.

Advanced Structural Analysis EGF Cylinders Under Pressure

The University of Melbourne Engineering Mechanics

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

Sample Question Paper

Unit I Stress and Strain

Theory at a Glance (for IES, GATE, PSU)

**********************************************************************

MECHANICAL ENGINEERING

Mechanical Properties of Materials

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

WORKBOOK MECHANICS OF MATERIALS AND ELEMENTS OF ENGINEERING STRUCTURES


Mechanics PhD Preliminary Spring 2017

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

9 MECHANICAL PROPERTIES OF SOLIDS

Module 5: Theories of Failure

ENGINEERING MECHANICS

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

ME 025 Mechanics of Materials

(48) CHAPTER 3: TORSION

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

Symmetric Bending of Beams

Chapter 4-b Axially Loaded Members

ME 243. Mechanics of Solids

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Chapter 3. Load and Stress Analysis. Lecture Slides

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

Use Hooke s Law (as it applies in the uniaxial direction),

UNIT- I Thin plate theory, Structural Instability:

MECHANICS OF MATERIALS

202 Index. failure, 26 field equation, 122 force, 1

STATICALLY INDETERMINATE STRUCTURES

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

3D Elasticity Theory

Transcription:

GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987-018) Office : F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064 Mobile : 81309090, 9711853908 E-mail: info@iesmasterpublications.com, info@iesmaster.org Web : iesmasterpublications.com, iesmaster.org

IES MASTER PUBLICATION F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064, Mobile : 81309090, 9711853908 E-mail : info@iesmasterpublications.com, info@iesmaster.org Web : iesmasterpublications.com, iesmaster.org All rights reserved. Copyright 018, by IES MASTER Publications. No part of this booklet may be reproduced, or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior permission of IES MASTER, New Delhi. Violates are liable to be legally prosecuted. Second Edition : 017 Third Edition : 018 Typeset at : IES Master Publication, New Delhi-110016

PREFACE It is an immense pleasure to present topic wise previous years solved paper of GATE Exam. This booklet has come out after long observation and detailed interaction with the students preparing for GATE exam and includes detailed explanation to all questions. The approach has been to provide explanation in such a way that just by going through the solutions, students will be able to understand the basic concepts and will apply these concepts in solving other questions that might be asked in future exams. GATE exam now a days has become more important because it not only opens the door for higher education in institutes like IIT, IISC, NIT's but also many of the PSUs have started inducting students on the basis of GATE score. In PSU s, which are not inducting through GATE route, the questions in their exams are asked from GATE previous year papers. Thus, availability of authentic solutions to the students is the need of the day. Towards this end this booklet becomes indispensable. I am thankful to IES master team without whose support, I don't think, this book could have been flawlessly produced. Every care has been taken to bring an error free book. However comments for future improvement are most welcome. Mr. Kanchan Kumar Thakur Director Ex-IES

CONTENTS 1. Strength of Materials... 01 81. Structural Analysis... 8 15 3. RCC Structure and Pre-Stress Concrete... 153 4. Design of Steel Structure... 3 79 5. Soil Mechanics... 80 449 6. Fluid Mechanics... 450 563 7. Engineering Hydrology... 564 60 8. Irrigation Engineering... 603 631 9. Environmental Engineering... 63 719 10. Highway Engineering... 70 797 11. Surveying...798 86 1. Miscellaneous...87 834 13. Engineering Mathematics... 835 914 14. Aptitude...915 936 15. English...937 945

Syllabus Bending moment and shear force in statically determinate beams. Simple stress and strain relationship: Stress and strain in two dimensions, principal stresses, stress transformation. Mohr s circle. Simple bending theory, flexural and shear stresses, unsymmetrical bending, shear centre. Thin walled pressure vessels, uniform torsion, buckling of column. Combined and direct bending stresses. Contents 1. Strength of Materials ------------------------------------------------------------------------------------- 1 1. Shear Force and Bending Moment------------------------------------------------------------------- 13 4 3. Deflection of Beams ------------------------------------------------------------------------------------- 5 46 4. Transformation of Stress and Strain ------------------------------------------------------------------ 47 53 5. Combined Stresses-------------------------------------------------------------------------------------- 54 56 6. Bending Stress in Beams ------------------------------------------------------------------------------ 57 59 7. Shear Stress in Beams --------------------------------------------------------------------------------- 60 64 8. Torsion of Circular Shafts------------------------------------------------------------------------------- 65 68 9. Columns --------------------------------------------------------------------------------------------------- 69 74 10. Springs ----------------------------------------------------------------------------------------------------- 75 76 11. Thick and Thin Cylinders/Spheres -------------------------------------------------------------------- 77 78 1. Moment of Inertia ---------------------------------------------------------------------------------------- 79 81

GATE SOLVED PAPER 1987-018 CHAPTER Strength of Materials 1 One Mark Questions 1. An elastic bar of length L, uniform cross sectional area A, coefficient of thermal expansion and Young s modulus E is fixed at the two ends. The temperature of the bar is increased by T, resulting in an axial stress. Keeping all other parameters unchanged, if the length of the bar is doubled, the axial stress would be (a) (b) (c) 0.5 (d) 0.5 [ GAT E 017, S E T- I ]. In a material under a state of plane strain, a 10 10 mm square centred at a point gets deformed as shown in the figure. y 0.0005 rad 10 mm 10 mm x 0.004 mm If the shear strain xy at this point is expressed as 0.001 k (in rad.) the value of k is (a) 0.50 (b) 0.5 (c) 0.5 (d) 0.50 [ GAT E 017, S E T-I I ] 3. The creep strains are (a) caused due to dead loads only (b) caused due to live loads only (c) caused due to cyclic loads only (d) independent of loads 4. The Poisson's ratio is defined as (a) (c) axial stress lateral stress lateral stress axial stress (b) (d) [ GAT E 013] lateral strain axial strain axial strain lateral strain [ GAT E 01] 5. The number of independent elastic constant for a linear elastic isotropic and homogeneous material is (a) 4 (b) 3 (c) (d) 1 [ GAT E 010] 6. A mild steel specimen is under uniaxial tensile stress. Young s modulus and yield stress for mild steel are 10 5 MPa and 50 MPa respectively. The maximum amount of strain energy per unit volume that can be stored in this specimen without permanent set is (a) 156 Nmm/mm 3 (b) 15.6 Nmm/mm 3 (c) 1.56 Nmm/mm 3 (d) 0.156 Nmm/mm 3 [ GAT E 008] 7. For an isotropic material, the relationship between the young's modulus (E), shear Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org

STRENGTH OF MATERIALS 3 modulus (G) and Poisson's ratio (µ) is given by E (a) G = 1 E (c) G = 1 (b) G = (d) G = E 1 E 1 [ GAT E 007] 8. The necessary and sufficient condition for a surface to be called as a free surface is (a) no stress should be acting on it (b) tensile stress acting on it must be zero (c) shear stress acting on it must be zero (d) no point on it should be under any stress [ GAT E 006] 9. The components of strain tensor at a point in the plane strain case can be obtained by measuring longitudinal strain in following directions8 (a) along any two arbitrary directions (b) along any three arbitrary directions (c) along two mutually orthogonal directions (d) along any arbitrary direction [ GAT E 005] 10. The symmetry of stress tensor at a point in the body under equilibrium is obtained from (a) conservation of mass (b) force equilibrium equations (c) moment equilibrium equations (d) conservation of energy [ GATE 005] 11. A bar of varying square cross-section is loaded symmetrically as shown in the figure. Loads shown are placed on one of the axes of symmetry of cross-section. Ignoring self weight, the maximum tensile stress in N/mm anywhere is 100 mm (1) (1) () 50 () 100 kn 100 kn 50 kn (a) 16.0 (b) 0.0 (c) 5.0 (d) 30.0 [ GAT E 003] 1. The shear modulus (G), modulus of elasticity (E) and the Poisson's ratio (v) of a material are related as, (a) G = E/[(1 + v)] (c) G = E/[(1 v)] (b) E = G/[(1 + v)] (d) G = E/[(1 v)] [ GAT E 00] 13. The stress-strain diagram for two materials A and B is shown below: Stress Material A Material B Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org O Strain The following statements are made based on this diagram (I) Material A is more brittle than material B (II) The ultimate strength of material B is more than that of A With reference to the above statements, which of the following applies? (a) Both the statements are false (b) Both the statements are true (c) I is true but II is false (d) I is false but II is true 14. In a linear elastic structural element [ GAT E 000] (a) Stiffness is directly proportional to flexibility (b) Stiffness is inversely proportional to flexibility (c) Stiffness is equal to flexibility (d) Stiffness and flexibility are not related [ GAT E 1991] 15. A cantilever beam of tubular section consists of materials, copper as outer cylinder and steel as inner cylinder. It is subjected to a temperature rise of 0 C and copper > steel. The stresses developed in the tubes will be

4 GATE SOLVED PAPER 1987-018 (a) Compression is steel and tension in copper (b) Tension in steel and compression in copper (c) No stress in both (d) Tension in both the materials [ GAT E 1991] 16. The maximum value of Poisson's ratio for an elastic material is (a) 0.5 (b) 0.5 (c) 0.75 (d) 1.0 [ GAT E 1991] 17. The principle of superposition is made use of in structural computations when: (a) The geometry of the structure changes by a finite amount during the application of the loads (b) The changes in the geometry of the structure during the application of the loads is too small and the strains in the structure are directly proportional to the corresponding stresses. (c) The strain in the structure are not directly proportional to the corresponding stresses, even though the effect of changes in geometry can be neglected. (d) None of the above conditions are met. Two Marks Questions [ GAT E 1990] 18. A plate in equilibrium is subjected to uniform stresses along its edges with magnitude xx 30 MPa and yy 50 MPa as shown in the figure. yy = 50 MPa (a) 10 10 6 (b) 60 10 6 (c) 0.0 (d) 10 10 6 [ GAT E 018, S HI FT-I ] 19. A cylinder of radius 50 mm and weight, W = 10 kn is rolled up an obstacle of height 50 mm by applying a horizontal force P at its centre as shown in the figure. P W 50 mm All interfaces are assumed frictionless. The minimum value of P is (a) 4.5 kn (b) 5.0 kn (c) 6.0 kn (d) 7.5 kn [ GAT E 018, S HI FT-I ] 0. Two rigid bodies of mass 5 kg and 4 kg are at rest on a frictionless surface until acted upon by a force of 36 N as shown in the figure. The contact force generated between the two bodies is 36 N 5 kg 4 kg (a) 4.0 N (b) 7. N (c) 9.0 N (d) 16.0 N [ GAT E 018, SHI FT- II ] 1. Consider the stepped bar made with a linear elastic material and subjected to an axial load of 1 kn as shown in the figure/ y x xx = 30 MPa L = 400 mm 1 1 A 1 = 100 mm 5 E 1 = 10 MPa The Young s modulus of the material is 10 11 N/m and the Poisson s ratio is 0.3. If zz is negligibly small and assumed to be zero, then the strain is zz L = 900 mm A = 60 mm 5 E = 3 10 MPa P = 1 kn Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org

STRENGTH OF MATERIALS 7 ANSWERS : 1 Mark : -: Marks :- 1. (a) 6. (d) 11. (c) 16. (b) 18. (a) 3. (c) 8. (c). (d) 7. (b) 1. (a) 17. (b) 19. (d) 4. (15) 9. (c) 3. (a) 8. (c) 13. (c) 0. (d) 5. (a) 30. (c) 4. (b) 9. (b) 14. (b) 1. (35) 6. (100 kn/m ) 31. (c) 5. (c) 10. (c) 15. (c). (15707.96) 7. (a) 1. (a) A One Mark Solutions L B A B T = L T T. (d) Shear strain in an element is positive when the angle between two positive faces (or two negative faces) is reduced. The strain is negative when the angle between two positive (or two negative) faces increase. y 3 Effect of temperature increase Effect of restraining force generated From compatibility = R 0 L T = RL AE T R R = R A = Stress = ET R RL AE Hence stress is independent of length of bar. 4 1 Face & 3 are +ve face Face 1 & 4 are ve face. Angle between 1 & 4 is increased by 0.0005 rad. xy = 0.0005 = 0.001 K K = 0.5 x Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org

8 GATE SOLVED PAPER 1987-018 3. (a) Creep strains are those which occur with time at a contant level of stress. Thus, these occur due to permanent load i.e., Dead load. Lateral strain 4. (b) Poissons ratio, µ = Longitudinal strain Note : 5. (c) The poisson's ratio of a stable, isotropic, linear elastic material cannot be less than 1.0 and nor greater than 0.5 due to the requirement that Young's modulus, shear modulus and bulk modulus have positive values. Rubber has a poisson ratio close to 0.5 and is therefore almost incompressible Cork, on the other hand, has a Poisson ratio close to zero. This makes cork function well as a bottle stopper, since an axial loaded cork will not swell laterally to resist bottle insertion. Material Isotropic Orthotropic (wood) Anisotropic No. of independent elastic constants 9 1 6. (d) Young s modulus, E = 10 5 MPa Yield stress, f y = 50 MPa Strain energy per unit volume = 1 stress strain 8. (c) 4. µ = 3K G 6K G 9. (b) In plane strain case, component of strain tensor at a point are x, y, xy 10. (c) 11. (c) We have three unknown so we require 3 equations to find them. These unknowns are related to longitudinal strain by the equation. 1 = x cos 1 + y sin 1 + xy sin 1 = x cos + y sin xy + sin 3 = x cos 3 + y sin xy 3 + sin 3 Hence to find out component of strain tensor we measure longitudinal strain ( ) along any three arbitrary direction. Symmetry of stress tensor at a point in a body under equilibrium is obtained from moment equilibrium equation. Tensile stress at 1 1 = Force Area 50 kn 50 kn 50 kn = 1 f y f y E = 1 (50) 5 10 = 0.156 N/mm = 0.156 Nmm/mm 3 7. (b) The relation between elastic constants is 1. E = G (1 + µ). E = 3K (1 µ) 3. E = 9KG 3K G 50 kn 50 1000 = = 5 N/mm 100 100 Tensile stress at = F 50 1000 = A 50 50 = 0 N/mm Hence, max tensile stress = 5 N/mm 1. (a) The relation between elastic constants is 1. E = G (1 + µ) Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org

STRENGTH OF MATERIALS 9. E = 3K (1 µ) 3. E = 4. µ = 9KG 3K G 3K G 6K G 13. (c) Strain in material B is more, hence is more ductile than A or in other words, Material A is more brittle than B. Material A can reach upto higher stress level hence ultimate strength of material A is more than that of B. Hence, statement (I) is true and II is false. 14. (b) Stiffness is defined as the force required for a unit displacement. Flexibility is defined as displacement caused by a unit force. Both are inverse of one another. 15. (c) As it is not given whether the two material form a composite section or not i.e., they are connected to each other or not, we will treat them to be not connected. Hence as cantilever beam is fixed at one end and free at other. The two will act independently and stress in both of them will be zero. Lateral strain 16. (b) Poisson s ratio, µ= Longitudinal strain The poisson's ratio of a stable, isotropic, linear elastic material cannot be less than 1.0 and nor greater than 0.5 due to the requirement that Young's modulus, shear modulus and bulk modulus have positive values. 18. (a) 19. (d) The principle of superposition can be applied only when 1. stress-strain relationship is linear.. the geometry of the structure doesn't change with the application of load. i.e., strains are small Hence answer is option (b). Two Marks Solutions xx = 30 MPa, yy = 50 MPa E = 10 11 N/m = 10 5 N/mm = 10 5 MPa Poisson ratio, µ = 0.3 zz = 0 zz = P zz E µ( xx yy ) E 0.3(30 50) 10 = 5 = 10 10 6 W D 50 mm Note: Rubber has a Poisson s ratio close to 0.5 and is therefore almost incompressible. Cork, on the other hand, has a Poisson ratio close to zero. This makes cork function well as a bottle stopper, since an axial loaded cork will not swell laterally to resist bottle insertion. W = 10 kn M D = 0 17. (b) The principle of superposition is stated as- 'the deflection at a given point in a structure produced by sev eral loads acting simultaneously on the structure can be found by superposing deflections at the same point produced by loads acting individually. C A B D 50 mm N = 0 For rolling, the normal reaction should be zero when the cylinder just starts to roll. Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org

1 0 GATE SOLVED PAPER 1987-018 0. (d) BD = AD AB = BD = 150 mm P 00 W 150 = 0 P = 10 150 00 = 7.5 kn (50) (00) = (1000) 400 (1000) 900 5 5 100 10 60 3 10 = 10 + 5 = 35 Nmm. (15707.96) 36 N 5 kg 4 kg Complementry energy Net force = Net mass acceleration 36 = 9 a a = 4 ms Now, considering 5 kg weight only force on 5 kg = 5 4 N = 0 N Strain energy The area enclosed by the inclined line and the vertical axis is called complementary strain energy 36N F P 36N F = 0N 1. 35 L = 400 mm 1 L = 900 mm F = 16N 1 A 1 = 100 mm 5 E 1 = 10 MPa A = 60 mm 5 E = 3 10 MPa 1 kn 1 kn 1 kn.5 mm y = l = = 50 MPa.5 000 = 1 800 Complementry strain energy = strain energy 1 vol. of bar = y 1 1 = 50 8 000 800 4 = 15707.96 Nmm P = 1 kn 1 kn 3. (c) V 0 U = P L1 A E 1 1 V 0 (1 ) 0 E E E 0.5 4. (15) Regd. office : F-16, (Upper Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-41013406 Mob. : 8010009955, 9711853908 E-mail: ies_master@yahoo.co.in, info@iesmaster.org