Modeling the Time-Dependent Rheological Properties of Pistachio Butter

Similar documents
Rheological Properties of Chocolate Pistachio S. Khorasani *1, M. H. Azizi 2, M. Eshaghi 3

Rheological behavior of sesame paste/honey blend with different concentration of honey

Effect of Milling Process on Colloidal Stability, Color and Rheological Properties of Pistachio Paste

A calibration method for a new type of rheometer

THE RHEOLOGICAL BEHAVIOR ANALYSIS OF GREEN SYRUPS PRODUCED AT RAW CANE SUGAR REFINING ABSTRACT

Bahareh Emadzadeh (PhD)

Time-independent and time-dependent rheological characterization of vegetable-based infant purees

Pharmaceutics I صيدالنيات 1. Unit 6

Mr.N.Srikar M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE

and Food for the 21st Centurv Food.r c.c..1<11(/l Food Texture and Viscosity. Concept and Measurement. New

Lecture 7: Rheology and milli microfluidic

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

Particle Size Distribution of Natural Peanut Butter and its Dynamic Rheological Properties

CH5716 Processing of Materials

Steady state and time dependent rheological behaviour of mayonnaise (egg and eggless)

Pharmaceutics I. Unit 6 Rheology of suspensions

A FRACTIONAL MODEL FOR TIME-VARIANT NON-NEWTONIAN FLOW

::: Application Report

A Comparative Study on Rheological Behavior of Saleps, CMC and. Guar Gum as a Function of Concentration and Temperature

RHEOLOGICAL BEHAVIOR OF SOFT FLOUR IN PRESENCE OF OIL AND SURFACTANT

Rheological Properties

Lecture 7. Rheology. Hamid Alghurabi. Assistant Lecturer in Pharmaceutics

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts

Handle Food Samples with Care for Reliable Rheological Results

This chapter is a study of the shear stress as a function of the shear rate for Newtonian and non-newtonian biological materials.

Contents. Preface XIII. 1 General Introduction 1 References 6

The principals of rheology In pharmaceutical technology

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May ISSN

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Mass Balance

Guideline for Rheological Measurements

Relationship between Rheology, Particle Size and Texture of Mayonnaise

A simple model to describe the thixotropic behavior of paints

Drilling Fluid Thixotropy & Relevance

Rheological properties of currant purees and jams: Effect of composition and method of proceeding

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Science 8. Unit A - Mix and Flow of Matter. Topic 1: Matter on the Move

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Introduction to Viscometry and Rheology, Basics, Rotational Testing. Basic Seminar Applied Rheology

Rheological Properties of Carbomer Dispersions

Particle charge and Rheology

Rheological Properties of Yoghurt Produced From Blends of Whole Milk and Soybean Powder

Interfacial Shear Rheology of Films Formed by Coffee

FOOD ENGINEERING Vol. II - Solid Foods - Tabilo-Munizaga, Gipsy, Barbosa-Cánovas, Gustavo V., Fernández-Molina, Juan J.

MODIFICATION OF THE CONCRETE RHEOMETER TO DETERMINE RHEOLOGICAL PARAMETERS OF SELF- CONSOLIDATING CONCRETE VANE DEVICE

Physicochemical and Rheological Characterization of an Acidic Milk Product: Kefir Concentration Effect

Shear flow curve in mixing systems A simplified approach

Rheology The relationship between rheological response and material structure

Rheometry. II.1 Introduction

Thickeners + Rheology Guide

Thickeners/Rheology Guide

ISO 6388 INTERNATIONAL STANDARD. Surface active agents - Determination of flow properties using a rotational viscometer. Second edition

Emulsion Droplets: Characteristics and Importance

GENERALIZED NEWTONIAN FLUIDS AS LUBRICANTS IN THE HYDRODYNAMIC CONICAL BEARINGS A CFD ANALYSIS

In-line ultrasound based rheology of concentrated suspensions

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Polymerization Technology Laboratory Course

EFFECT OF TEMPERATURE ON FLOW BEHAVIOR DURING EVAPORATION PROCESS OF POMEGRANATE CONCENTRATE (DIBS)

Preparation and Characterization of Eco-Friendly Hydrogen Peroxide Based Gel Oxidizer

RHEOLOGICAL BEHAVIOUR OF STARCH ADHESIVES IN DEPENDENCE OF THEIR COMPOSITION

Effect of concentration on the rheological behavior of aqueous non ionic polymer solutions

THE INFLUENCE OF XANTHAN AND CREAMING AND FLOCCULATION OF AN OIL-IN-WATER EMULSION CONTAINING SOY PROTEIN

Food Hydrocolloids 23 (2009) Contents lists available at ScienceDirect. Food Hydrocolloids

MODELING ON RHEOLOGICAL PROPERTIES OF TROPICAL FRUIT JUICES

Rheology of strongly sedimenting magnetite suspensions

Time-Dependent Rheology of Concentrated Xanthan Gum Solutions

Custom Search Sponsored Links

Effect of Sorbitol on Rheological, Textural and Microstructural Characteristics of Peanut Butter

Characteristic Temperatures of Waxy Crude Oils

Characterization of the structure at rest in foods (Example: Ketchup)

Rheological properties of flaxseed gum solutions with NaCl or CaCl 2 addition

On the Rheological Parameters Governing Oilwell Cement Slurry Stability

Time Independent Behavior and Rheological Characterization of Sudanese Sesame Oils

Data analysis from capillary rheometry can be enhanced by a method that is an alternative to the Rabinowitsch correction

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Overcoming and quantifying Wall Slip in measurements made on a rotational rheometer

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Using rheology to study the hardness and spreadability of butter

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations

RHEOLOGICAL MATHEMATICAL MODELS OF DEPENDENCE DYNAMIC VISCOSITY SHEAR RATE FOR SOYBEAN OIL

New Additive Chemistry for Improved Pigment Suspension Control in Non- Aqueous UV Cured High Performance Coatings

Introduction to Marine Hydrodynamics

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device

Contraction flow measurements of extensional properties

Objective Methods of Food Analysis. Brookfield Viscometer. Brookfield viscometer

Dynamic (absolute) Viscosity

Well prepared - good results

1 Introduction Why the Interpretive Approach? (Niall W. G. Young).

Chapter 3 Non-Newtonian fluid

Article for the 29 th Sensing Forum

PREDICTION OF PHYSICAL PROPERTIES OF FOODS FOR UNIT OPERATIONS

Scholar: M. Azad Emin. Supervisor: Prof. Dr. Ing. Heike P. Schuchmann

Investigation of Emulsified Asphalts Properties by DSR to Evaluate their Performance

Ikatan Ahli Teknik Perminyakan Indonesia

What Happens When Rheological Properties Change? Looking into Rheological Properties with Simultaneous Collection of Microscopic Images

MEASURING RHEOLOGICAL CHARACTERISTICS AND SPREADABILITY OF SOFT FOODS USING A MODIFIED SQUEEZE-FLOW APPARATUS. ABSTRACTjts_

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES

Establishing an Experimental Preconditioning Procedure for Rheological Characterization of Oil-Based Drilling Fluids

Rheology step 1. Principles of Rheology and its Measurement techniques. Panta Rei. TRAINING. Viscosity, Elasticity and Viscoelasticity

A Comprehensive Approach to Barite Sag Analysis on Field Muds

Transcription:

Int. J. Nuts Related Sci. Vol. 1, No. 1, Summer 21, pp.38-45 Modeling the Time-Dependent Rheological Properties of Pistachio Butter Seyed M. A. Razavi, Masoud Taghizadeh 1 and A Shaker Ardekani 2 1.Department of Food Science and Technology, Ferdowsi University Mashhad (FUM),Mashhad PO Box: 91775-1163, Iran 2.Pistachio Research Institute (PRI), Rafsanjan PO Box: 77175-435, Iran Abstract Pistachio butter (semi solid paste), which is made from roasted pistachio kernels, is an appropriate alternative to work on because of its high nutritional and economical values. In this study, timedependent flow properties of pistachio butter were determined at two different temperatures (25 C and ) for five different formulations (with different levels of emulsifying agents). Forward and backward flow curves were plotted and the amount of existing hysteresis loop was measured. Also, shear stress vs. time of shearing data were assessed using three models namely; Weltman, First-order shear stress decay with a zero equilibrium stress value, and First-order shear stress decay with a nonzero equilibrium stress value. To evaluate the ability of these models to predict the rheological characteristics of pistachio butter, three statistical parameters namely; R 2, RMSE, and MRDM were used and finally the Weltman model was found to be the most appropriate to fit the experimental data. The results showed that pistachio butter exhibits a thixotropic behavior and its apparent viscosity decreases with increasing the time of shearing. Keywords: pistachio butter; rheology, thixotropy, modeling, weltman model, shear stress decay model. Introduction Pistachio butter, a semi-solid paste, is made from ground and roasted pistachio kernels with adding some proper flavorings and sweeteners. Because of the presence of high amount of unsaturated oil in such a product, it is also necessary to use proper amount of emulsifying and anti-oxidation agents in its formulation (Shaker et al., 25). Pistachio butter is of high nutritive value; for it is rich in lipids, proteins, carbohydrates, and vitamins and can be used in different food products such as cookies, ice creams, and cakes (Shaker et al., 25). On the other hand, the characterization of timedependent rheological properties of food systems is important to establish relationships between structure and flow (Abu-Jdayil, 22) and to correlate physical parameters with sensory evaluation (Figoni and Sheomaker, 1983). There is a number of published works on the rheological properties of semi-solid pastes such as mustard paste (Bhattacharya et al. 1999), peanut butter (Guillaume et al., 21) and sesame butter (Razavi, Habibi and Alaee 27). Abu- Jdayil et al., (22) investigated rheological characteristics of milled sesame (tehineh) and it was found that tehineh exhibits a thixotropic 38

behavior that increases with increasing shear rate and is mitigated by increasing temperature. Razavi and Habibi, (26) investigated timedependent flow behavior of reduced fat sesame paste/date syrup blends. They examined two models, known as Weltman model and first-order shear stress decay with a zero equilibrium stress, to predict the rheological behavior of samples and it was found that time-dependent behavior of samples was good fitted with these models. Taghizadeh and Razavi, (29) studied the timeindependent rheological properties of pistachio butter and it was found that pistachio butter behaves a non-newtonian pseudo-plastic fluid with corresponding amount of yield stress. However, time-dependent rheological properties of pistachio butter, to the best of our knowledge, were not examined. A study regarding the chemical composition and sensory characteristics of pistachio butter was carried out by Shaker et al., 25. They found that to achieve the most emulsion stability, the best type of emulsifying agent is a combination of mono-diglyceride and lecithin. Generally, an understanding of time dependent rheological properties of food materials has a direct effect on the optimization of processing stages such as mixing, handling, storage, and final quality (Tabilo-Munizaga and Barbosa-Canovas, 25). The objectives of this work were (1) to investigate the time-dependent rheological properties of pistachio butter, (2) to determine the best model to fit the shear stress vs. time data in pistachio butter, and (3) to analyze the effect of different levels of emulsifying agents (monodiglyceride and lecithin at five levels) on the time-dependent rheological characteristics of pistachio butter. Materials and methods Sample preparation All samples studied in this research, were supplied from Pistachio Research Institute (PRI), Rafsanjan, Iran. The approximate composition (w/w%) of provided pistachio butter samples was as follows: Grounded and roasted pistachio kernels 84%, sweeteners such as sugar 1%, moisture content 3%, salt 1-2%, and emulsifying agents -2%. There were five types of samples which were different in emulsifier s level. To facilitate the measurements, we named them as follows: Type 1: blank sample or without any emulsifier, Type 2: containing.5% of lecithin and monodiglyceride. Type 3: containing 1% of lecithin and monodiglyceride. Type 4: containing 1.5% of lecithin and monodiglyceride. Type 5: containing 2% of lecithin and monodiglyceride. Four samples were made from each type to be tested at two temperature levels (25 C & ) with two repetitions. It has to be mentioned that according to previous study which was done on chemical and sensory evaluation of pistachio butter, it was found that pistachio butter type 3 has the most emulsion stability and the most homogenous texture (Shaker et al., 25). Rheological measurements Rheological properties of pistachio butter were measured with a Bohlin Visco 88 viscometer (Bohlin instrument, UK) equipped with a bob and a cup geometry (bob length = 6 mm; bob 39

diameter = 14 mm; gap width = 1 mm) and a heating circulator (Julabo, Model F12-MC, Julabo Labortechnik, Germany). It should be pointed out that no surface slip was observed in this viscometer system. The software Bohlin v6.32 was used to generate shear stress-shear rate data. The instrument was equipped with a device that allows continuous speed variation of internal cylinder (bob). Shear rates ranging from 14 s -1 to 3 s -1 and from 3 s -1 to 14 s -1 were used to obtain forward (increasing shear rate) and backward (decreasing shear rate) curves, respectively. The period of experiment was about 8 min and the values of the shear rate and shear stress were recorded every 15 seconds. The resulting hysteresis loops were calculated by using Bohlin v6.32 software as an indication of the amount of time dependency. In the second part of this work, the timedependent rheological properties were investigated by shearing pistachio butter samples for 1 minutes at constant shear rate (15 s -1 ). Then, the shear stress was measured as a function of shearing time. All measurements were done at two temperatures (25 C & ) and a controlled temperature bath circulated water through the jacket surrounding the rotor and cup assembly to maintain the temperature. Modeling time-dependent behavior The shear stress vs. time of shearing data for all pistachio butter samples were fitted by following famous models (Steffe, 1996 and Rao, 1999): 1. Weltman, 1943: τ = A + B ln(t) (1) Where, τ is the shear stress, t is the shearing time, and A and B are constants that characterize a material s time dependent behavior. 2. First-order stress decay, with a zero equilibrium stress value: τ = τ e kt (2) Where, τ is the initial shear stress value, and k is the breakdown rate constant. 3. First-order stress decay, with a non-zero equilibrium stress value: kt τ = τ e + ( τ e ) e τ (3) Where, τ eq is the equilibrium shear stress value. Modeling evaluation To select the most proper model for the prediction of time-dependent flow behavior in pistachio butter, three statistical parameters were used in this study as follow (Sokal & James, 1981): 1. Determination coefficient (R 2 ), which is obtained by: R 2 1 = n n ( x pred x) ( xexp x) 1 2 2 (4) Where, n is the number of experimental data, x exp is the value resulted from the experiment, x pred is calculated value by the corresponding model, and x is the grand mean. The best value for R 2 must be close to 1. 2. Root Mean Square Error (RMSE), which is calculated as follow: 2 1 = n RMSE ( xexp x pred ) (5) n 1 1 2 4

The value resulted from equation above must be divided on the mean value of each treatment to achieve the final RMSE value. The optimized value for RMSE is in the range of.1. 3. Mean Relative Deviation Modulus (MRDM) or E%, which is calculated using the following relationship: 1 % E = n x exp x x exp pred (6) The optimized value for this parameter is in the range of 5. Results and Discussion Flow curves Figs. 1-5 show the flow curves representing shear stress/shear rate relationship for pistachio butter samples of type 1, 2, 3, 4, and 5, respectively, obtained at 25 C and. The main characteristic of these rheograms were the development of a hysteresis loop, the higher the area below the curve, the higher the thixotropic effect (Holdsworth, 1993). The results showed that shear stress-shear rate relationship is nonlinear and all samples behave as a non- Newtonian fluid, pseudoplastic type, with presence of thixotropy as result of structure breakdown (Figs. 1-5). Table 1 shows the hysteresis values for all samples calculated by Bohlin v6.32 software. The high amount of hysteresis in all samples is an indication of the high shearing effect on the molecular structure of pistachio butter such that the apparent viscosity has decreased. In other words, there is an irreversible, shear induced, and permanent damage affecting the molecular structure of food biopolymers, namely fats. Time-dependent flow properties Pistachio butter samples were sheared at a constant shear rate (15 s -1 ) for 1 minutes. Figs. 6 and 7 show the shear stress as a function of shearing time for five pistachio butter samples at 25 C and, respectively. The data obtained from these rheograms were fitted using three models, namely: Weltman (Eq. 1), the first-order shear stress decay, with a zero equilibrium stress value (Eq. 2), and the first-order shear stress decay, with a non-zero equilibrium stress value (Eq. 3). Table 2 shows the regression parameters obtained for these models. It can be found that although, in some cases, the first-order shear stress decay, with a non-zero equilibrium stress value shows satisfactory results, but the most appropriate model for all samples at both 25 C and is the Weltman model. In addition to, the first-order stress decay, with a zero equilibrium stress value, in most of the samples, shows low ability to fit the experimental data. Table 3 shows the parameters of the Weltman model evaluated at 25 C and. The A and B constants appeared in the range of 376.426 to 2213.493 Pa and 21.624 to 235.198 Pa, respectively. It can be understood that increasing the temperature has caused a great decrease in magnitude of A, which is an indication of resistance of the fluid against the flow, in all samples. Also, the most obtained value for parameter A is belonged to sample 3 at 25 C which is considered as the optimized sample in the case of type and amount of emulsifying agent used in formulation. Furthermore, it can be observed that the extent of thixotropy embodied by the magnitude of B, decreases with increasing temperature, at the fixed shearing rate of 15 s -1. 41

This means that the shearing effect is mitigated by increasing temperature, which could be explained in terms of extra flexibility and the resilience 3-D fat polymers gain such that they better align instead of breakdown with external applied shear stress. On the other hand, the highest amount of B constant is belonged to pistachio butter type 3 (the optimized sample), which could be interpreted in terms of high emulsion stability due to the proper and adequate amount of emulsifiers. These results are similar to findings reported by Abu-Jdayil, Al-Malah and Asoud, (22) regarding milled sesame (tehineh). Both tehineh and pistachio butter are semi-solid foodstuffs (i.e. pastes) with high amount of fat in their chemical composition. Conclusion Pistachio butter is a semi-solid substance that behaves as non-newtonian fluid. The presence of hysteresis in the forward and backward flow curves shows the high effect of time on the flow properties of pistachio butter samples. As far as the effect of steady shearing on the flow properties of pistachio butter is concerned, three models were used to predict the flow behavior, namely, Weltman, the first order stress decay with a zero equilibrium stress value and the first order stress decay with non-zero equilibrium stress value. It was found that pistachio butter exhibits a thixotropic behavior that is mitigated by increasing temperature and its apparent viscosity was decreased by increasing the time of shearing. Also, the Weltman model is appropriate to fit the time-dependency behavior of pistachio butter. Acknowledgement This project was supported by the Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Iran. Also, supports from the Pistachio Research Institute of Iran are gratefully acknowledged. Figures Caption Fig. 1. Shear stress shear rate relationship flow curves for pistachio butter type 1 at 25 C and Fig. 2. Shear stress shear rate relationship flow curves for pistachio butter type 2 at 25 C and Fig. 3. Shear stress shear rate relationship flow curves for pistachio butter type 3 at 25 C and Fig. 4. Shear stress shear rate relationship flow curves for pistachio butter type 4 at 25 C and Fig. 5. Shear stress shear rate relationship flow curves for pistachio butter type 5 at 25 C and Fig. 6. Shear stress of pistachio butter at 25 C as a function of shearing time Fig. 7. Shear stress of pistachio butter at 25 C as a function of shearing time 18 16 14 12 1 8 6 4 2 5 1 15 2 25 3 35 45C- Backward Fig. 1. Shear stress shear rate relationship flow curves for pistachio butter type 1 at 25 C and 42

1 1 9 9 8 8 7 7 6 5 4 3 45C- Backward 6 5 4 3 45C- Backward 2 2 1 1 5 1 15 2 25 3 35 5 1 15 2 25 3 35 Fig. 2. Shear stress shear rate relationship flow curves for pistachio butter type 2 at 25 C and Fig. 5. Shear stress shear rate relationship flow curves for pistachio butter type 5 at 25 C and 18 Time of Shearing vs. S.Stress at 25 C 16 14 16 14 12 1 8 6 45C-Backward 12 1 8 6 type1 type2 type3 type4 type5 4 4 2 2 1 2 3 4 5 6 5 1 15 2 25 3 35 Time of Shearing (s) Fig. 3. Shear stress shear rate relationship flow curves for pistachio butter type 3 at 25 C and Fig. 6. Shear stress of pistachio butter at 25 C as a function of shearing time 12 Time of Shearing vs. S. Stress at 6 1 5 8 6 4 45C- Backward 4 3 2 type1 type2 type3 type4 type5 2 1 5 1 15 2 25 3 35 1 2 3 4 5 6 Time of Shearing (s) Fig. 4. Shear stress shear rate relationship flow curves for pistachio butter type 4 at 25 C and Fig. 7. Shear stress of pistachio butter at 25 C as a function of shearing time Table 1. Hysteresis values for pistachio butter samples at 25 C and Sample 25 C Type 1 23714 23719 Type 2 23687 23727 Type 3 23731 23748 Type 4 23712 23724 Type 5 23712 2371 43

Table 2. The regression parameters obtained for the three models fitted to shear stress - shearing time data Sample Model 25 C R 2 RMSE E% R 2 RMSE E% Type 1 Type 2 Type 3 Type 4 Type 5 Weltman.967.5 3.662.935.13.857 Frist order (zero stress.833.19 7.274.946.34 3.125.96.51 4.996 Weltman.992.17 1.68.997.4.362 Frist order (zero stress.871.33 2.5.988.225 22.275 Weltman.992.18 1.652.985.9.71 Frist order (zero stress.932.26 2.112.988.9.621 Weltman.933.93 8.366.996.9.634 Frist order (zero stress.959.27 2.384.984.16 1.229 Weltman.986.13 1.141.971 9.196 1.79 Frist order (zero stress.835.49 3.847.829 22.88 5.163.984.14 1.17.975 8.49 2.44 Table 3. The parameters of Weltman model for a shearing period of 1 min, evaluated at 25 C and Sample 25 C A (Pa) -B (Pa) A (Pa) -B (Pa) Type 1 1373.374 153.351 477.771 21.624 Type 2 1735.62 185.336 449.416 29.882 Type 3 2213.493 235.198 376.426 23.75 Type 4 1918.86 171.844 891.593 75.921 Type 5 12.187 81.159 73.344 64.659 44

References Abu-Jdayil, B. (22) Modelling the timedependent rheological behavior of semisolid foodstuffs, Journal of Food Engineering, 57: 97-12. Abu-Jdayil, B., Al-Malah, K. I. M. & Asoud, H. (22) Rheological characterization of milled sesame, Food Hydrocolloids, 16: 55-61. Bhattacharya, S., Vasudha, N., & Krishna Murthy, K. S., (1999) Rheology of mustard paste: a controlled stress measurement, Journal of Food Engineering, 41: 187-191. Figoni, P. I. & Shoemaker, C. F. (1983) Characterization of time dependent flow properties of mayonnaise under steady shear. Journal of Texture Studies, 14: 431-442. Guillaume, P. C,, Carreau Pierre J. & Moan M. (21) Rheological properties of peanut butter, Rheologica Acta, 4: 86-96. Holdsworth, S. D. (1993) Rheological models used for the prediction of the flow properties of food products: a literature review. Transaction of Institute of Chemical Engineering, 71 (part C). Rao, M. A. (1999) Rheology of Fluid and Semisolid Foods (Principles and Applications), Aspen publication. Razavi, S. M. A., Habibi Najafi, M. B. & Alaee Z. (27) The time independent rheological properties of low fat sesame paste/date syrup blends as a function of fat substitutes and temperature, Food Hydrocolloids, 21: 198-22. Razavi, S. M. A. & Habibi Najafi, M. B. (26) The effect of fat substitute on the timedependent rheological properties of low fat sesame paste/date syrup blends (Halwa- Ardeh), Proceedings of the 4 th International Symposium on Food Rheology and Structure (ISFRS), Feb. 19-23, Zurich, Switzerland. Shaker, A. A. (25) Optimization of Pistachio butter formulation, Research report No. 82-14. Pistachio research Institute of Iran, Rafsanjan, Iran. Sokal, R. R. & Rohlf, F. J. (1981) Biometry: The Principles and Practice of Statistics in Biological Research (Second edition), W.H. Freeman and Company publication. Steffe, J. F. (1996) Rheological Methods in Food Process Engineering (second edition). Michigan, Freeman Press. Tabilo-Munizaga G., & Barbosa-Canovas, G. V. (25) Rheology for the food industry, Journal of Food Engineering, 67: 147-156. Taghizadeh, M. & Razavi, S.M.A. (29) Modeling the time-independent rheological behavior of pistachio butter, International Journal of Food Properties, 12(2): 331-34. 45