An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics.

Similar documents
Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem

Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems. Hammarling, Sven and Munro, Christopher J. and Tisseur, Francoise

Solving the Polynomial Eigenvalue Problem by Linearization

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics

Algorithms for Solving the Polynomial Eigenvalue Problem

Solving Polynomial Eigenproblems by Linearization

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

in Numerical Linear Algebra

Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Van Barel, Marc and Tisseur, Francoise. MIMS EPrint: 2016.

Nick Higham. Director of Research School of Mathematics

Tropical roots as approximations to eigenvalues of matrix polynomials. Noferini, Vanni and Sharify, Meisam and Tisseur, Francoise

KU Leuven Department of Computer Science

Quadratic Matrix Polynomials

Nonlinear eigenvalue problems - A Review

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

Eigenvector error bound and perturbation for nonlinear eigenvalue problems

SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION

On a root-finding approach to the polynomial eigenvalue problem

Backward Error of Polynomial Eigenproblems Solved by Linearization. Higham, Nicholas J. and Li, Ren-Cang and Tisseur, Françoise. MIMS EPrint: 2006.

ACCURATE SOLUTIONS OF POLYNOMIAL EIGENVALUE PROBLEMS

How to Detect Definite Hermitian Pairs

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Eigenvector Error Bound and Perturbation for Polynomial and Rational Eigenvalue Problems

Inverse Eigenvalue Problem with Non-simple Eigenvalues for Damped Vibration Systems

Nonlinear palindromic eigenvalue problems and their numerical solution

A numerical method for polynomial eigenvalue problems using contour integral

Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification. Al-Ammari, Maha and Tisseur, Francoise

NLEVP: A Collection of Nonlinear Eigenvalue Problems. Users Guide

Linear Algebra and its Applications

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Tropical aspects of eigenvalue computation problems

Structured Backward Error for Palindromic Polynomial Eigenvalue Problems

ETNA Kent State University

Available online at ScienceDirect. Procedia Engineering 100 (2015 ) 56 63

ON SYLVESTER S LAW OF INERTIA FOR NONLINEAR EIGENVALUE PROBLEMS

KU Leuven Department of Computer Science

A Framework for Structured Linearizations of Matrix Polynomials in Various Bases

Multiparameter eigenvalue problem as a structured eigenproblem

Structured Condition Numbers and Backward Errors in Scalar Product Spaces

STRUCTURE PRESERVING DEFLATION OF INFINITE EIGENVALUES IN STRUCTURED PENCILS

Definite Matrix Polynomials and their Linearization by Definite Pencils. Higham, Nicholas J. and Mackey, D. Steven and Tisseur, Françoise

Structure preserving stratification of skew-symmetric matrix polynomials. Andrii Dmytryshyn

Nonlinear Eigenvalue Problems: An Introduction

NLEVP: A Collection of Nonlinear Eigenvalue Problems

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra

Improved Newton s method with exact line searches to solve quadratic matrix equation

7 NLEVP: A Collection of Nonlinear Eigenvalue Problems

Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems

Polynomial Eigenvalue Problems: Theory, Computation, and Structure. Mackey, D. S. and Mackey, N. and Tisseur, F. MIMS EPrint: 2015.

A Structure-Preserving Doubling Algorithm for Quadratic Eigenvalue Problems Arising from Time-Delay Systems

Computing Unstructured and Structured Polynomial Pseudospectrum Approximations

Structured Condition Numbers and Backward Errors in Scalar Product Spaces. February MIMS EPrint:

NLEVP: A Collection of Nonlinear Eigenvalue Problems

More on pseudospectra for polynomial eigenvalue problems and applications in control theory

SOLVING A STRUCTURED QUADRATIC EIGENVALUE PROBLEM BY A STRUCTURE-PRESERVING DOUBLING ALGORITHM

ANALYSIS OF STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

arxiv: v2 [math.na] 8 Aug 2018

A UNIFIED APPROACH TO FIEDLER-LIKE PENCILS VIA STRONG BLOCK MINIMAL BASES PENCILS.

PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION.

Perturbation of Palindromic Eigenvalue Problems

that determines x up to a complex scalar of modulus 1, in the real case ±1. Another condition to normalize x is by requesting that

Computing the Action of the Matrix Exponential

A Structure-Preserving Method for Large Scale Eigenproblems. of Skew-Hamiltonian/Hamiltonian (SHH) Pencils

ELA

Computable error bounds for nonlinear eigenvalue problems allowing for a minmax characterization

Reduction of nonlinear eigenproblems with JD

Trimmed linearizations for structured matrix polynomials

On the computation of the Jordan canonical form of regular matrix polynomials

A Jacobi Davidson Method for Nonlinear Eigenproblems

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

Analysis of the Cholesky Method with Iterative Refinement for Solving the Symmetric Definite Generalized Eigenproblem

Finite and Infinite Elementary Divisors of Matrix Polynomials: A Global Approach. Zaballa, Ion and Tisseur, Francoise. MIMS EPrint: 2012.

A SIMPLIFIED APPROACH TO FIEDLER-LIKE PENCILS VIA STRONG BLOCK MINIMAL BASES PENCILS.

Perturbation theory for homogeneous polynomial eigenvalue problems

Combinatorial Types of Tropical Eigenvector

Iyad T. Abu-Jeib and Thomas S. Shores

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop

Maths for Signals and Systems Linear Algebra in Engineering

EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS

An algorithm for computing the eigenvalues of a max-plus matrix polynomial. James, Hook. MIMS EPrint:

On an Inverse Problem for a Quadratic Eigenvalue Problem

Nonlinear Eigenvalue Problems and Contour Integrals

Off-diagonal perturbation, first-order approximation and quadratic residual bounds for matrix eigenvalue problems

A Continuation Approach to a Quadratic Matrix Equation

Triangularizing matrix polynomials. Taslaman, Leo and Tisseur, Francoise and Zaballa, Ion. MIMS EPrint:

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

Bounds for eigenvalues of matrix polynomials

Fiedler Companion Linearizations and the Recovery of Minimal Indices. De Teran, Fernando and Dopico, Froilan M. and Mackey, D.

Structured condition numbers and backward errors in scalar product spaces

Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: 2011.

Computational Methods for Feedback Control in Damped Gyroscopic Second-order Systems 1

1. Select the unique answer (choice) for each problem. Write only the answer.

Lecture Note 5: Semidefinite Programming for Stability Analysis

Transcription:

An Algorithm for the Research Complete Matters Solution of Quadratic February Eigenvalue 25, 2009 Problems Nick Higham Françoise Tisseur Director of Research School of Mathematics The School University of Mathematics of Manchester ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/ Joint work with Sven Hammarling and Christopher Munro. 1 / 6

Quadratic Eigenvalue Problem (QEP) Consider Q(λ) = λ 2 M + λd + K C[λ] n n. Assume Q(λ) regular (det(q(λ)) 0). QEP: find nonzero vectors x, y and scalars λ C s.t. Q(λ)x = 0, y Q(λ) = 0. Q(λ) has 2n e vals. Finite e vals are roots of det(q(λ)) = 0. E val at 0 when K is singular and e val at when M is singular. MIMS Françoise Tisseur Quadratic eigenproblem 2 / 28

Example 1 Q(λ) = λ 2 0 8 0 0 6 0 + λ 1 6 0 2 7 0 + 1 0 0 0 1 0. 0 0 1 0 0 0 0 0 1 Regular: det Q(λ) = 6λ 5 + 11λ 4 12λ 3 + 12λ 2 6λ + 1 0. Six eigenpairs (λ k, x k ), k = 1: 6, given by k 1 2 3 4 5 6 λ k 1/3 1/2 1 i i x k 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 MIMS Françoise Tisseur Quadratic eigenproblem 3 / 28

NLEVP Toolbox Collection of Nonlinear Eigenvalue Problems : T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, F. T., 2011. Quadratic, polynomial, rational and other nonlinear eigenproblems. Provided in the form of a MATLAB Toolbox. Compatible with GNU Octave. Problems from real-life applications + specifically constructed problems. http://www.mims.manchester.ac.uk/research/ numerical-analysis/nlevp.html MIMS Françoise Tisseur Quadratic eigenproblem 4 / 28

Sample of Quadratic Problems n m quadratic Q(λ) = λ 2 M + λd + K. Speaker box (pep,qep,real,symmetric). n = m = 107. Finite element model of a speaker box. M 2 = 1, D 2 = 5.7 10 2, K 2 = 1.0 10 7. Railtrack (pep,qep,t-palindromic,sparse). n = m = 1005. Model of vibration of rail tracks under the excitation of high speed trains. M = K T, D = D T. Surveillance (pep,qep,real,nonsquare, nonregular). n = 21, m = 16. From calibration of surveillance camera using human body as calibration target. MIMS Françoise Tisseur Quadratic eigenproblem 5 / 28

Standard Solution Process Find all λ and x satisfying Q(λ)x = (λ 2 M + λd + K )x = 0. Commonly solved by linearization: Convert Q(λ)x = 0 into (A λb)ξ = 0, e.g., [ ] [ ] K 0 D M A λb = λ, ξ = 0 I I 0 [ x λx Solve (A λb)ξ = 0 with an eigensolver for generalized eigenproblem (e.g., QZ algorithm). Recover eigenvectors of Q(λ) from those of A λb. Eigensolver often absent from numerical libraries. MIMS Françoise Tisseur Quadratic eigenproblem 6 / 28 ].

Beam Problem /////// L /////// //////////// Transverse displacement u(x, t) governed by ρa 2 u t 2 + c(x) u t + EI 4 u x 4 = 0. u(0, t) = u (0, t) = u(l, t) = u (L, t) = 0. Separation of variables u(x, t) = e λt v(x, λ) yields the eigenvalue problem for the free vibrations: λ 2 ρav(x, λ) + λc(x)v(x, λ) + EI 4 v(x, λ) = 0. x4 MIMS Françoise Tisseur Quadratic eigenproblem 7 / 28

Discretized Beam Problem Finite element method leads to Q(λ) = λ 2 M + λd + K with symmetric M, D, K R n n. M > 0, K > 0, D 0. Roots of x Q(λ)x = 0, x C n \ {0}, λ = (x Dx) ± (x Dx) 2 4(x Mx)(x Kx). 2(x Mx) M > 0, K > 0, D 0 all e vals have Re(λ) 0. D is rank 1. Can show n pure imaginary e vals. MIMS Françoise Tisseur Quadratic eigenproblem 8 / 28

Eigenvalues of Q(λ) = λ 2 M + λd + K When M, K are nonsingular then theoretically [ ] [ ] M 0 D K C 1 (λ) = λ +, 0 I I 0 [ ] [ ] [ ] [ ] M 0 D K 0 M M 0 L 1 (λ) = λ +, L 0 K K 0 2 (λ) = λ + M D 0 K have the same eigenvalues as Q(λ). MIMS Françoise Tisseur Quadratic eigenproblem 9 / 28

Eigenvalues of Q(λ) = λ 2 M + λd + K When M, K are nonsingular then theoretically [ ] [ ] M 0 D K C 1 (λ) = λ +, 0 I I 0 [ D K [ ] M 0 L 1 (λ) = λ + 0 K K 0 ], L 2 (λ) = λ have the same eigenvalues as Q(λ). [ 0 M M D ] [ ] M 0 + 0 K coeffs = nlevp( damped beam,100); K = coeffs{1}; D = coeffs{2}; M = coeffs{3}; I = eye(2*nele); O = zeros(2*nele); eval = eig([d K; -I O],-[M O; O I]; % C 1 %eval = eig([d K; K O],-[M O; O -K]; % L 1 %eval = eig([-m O; O K],-[O M; M D]; % L 2 plot(eval,.r ); MIMS Françoise Tisseur Quadratic eigenproblem 9 / 28

Computed Spectra of C 1, L 1 and L 2 1 2 3 4 x 106 3 2 1 0 4 15 10 5 0 1 2 3 4 x 106 3 2 1 0 4 15 10 5 0 1 2 3 4 x 106 3 2 1 0 4 15 10 5 0 MIMS Françoise Tisseur Quadratic eigenproblem 10 / 28

Sensitivity and Stability of Linearizations Condition number measures sensitivity of the solution of a problem to perturbations in the data. Backward error measures how well the problem has been solved. error in solution < condition number backward error. MIMS Françoise Tisseur Quadratic eigenproblem 11 / 28

Sensitivity and Stability of Linearizations Condition number measures sensitivity of the solution of a problem to perturbations in the data. Backward error measures how well the problem has been solved. error in solution < condition number backward error. For a given Q(λ), infinitely many linearizations exist: can have widely varying eigenvalue condition numbers, computed eigenpairs can have widely varying backward errors. MIMS Françoise Tisseur Quadratic eigenproblem 11 / 28

Objectives To design a general purpose eigensolver for dense QEPs quadeig. Incorporate: Appropriate choice of linearization. Deflation of 0 and eigenvalues. Eigenvalue parameter scaling. Advantageous use of block structure. Careful recovery of the eigenvectors. A MATLAB and Fortran implementation. MIMS Françoise Tisseur Quadratic eigenproblem 12 / 28

Linearization for Q(λ) = λ 2 M + λd + K Opt for C(λ) = [ D I K 0 Simple block structure. ] [ ] M 0 (companion form, + λ 0 I Fiedler pencil) Always a linearization, i.e., there exist E(λ) and F(λ) with constant, nonzero determinants s.t. [ ] Q(λ) 0 = E(λ)C(λ)F(λ). 0 I Left/right e vecs of Q(λ) are easily recovered from those of companion linearizations. Deflation of 0 and e vals easy to implement. "Good" backward error and conditioning properties. MIMS Françoise Tisseur Quadratic eigenproblem 13 / 28

Eigenvalue Condition Numbers κ Q (λ) Q(λ)x = 0, y Q(λ) = 0, Q(λ) = λ 2 M + λ D + K. For λ simple, nonzero and finite, { λ κ Q (λ) = lim sup ɛ 0 ɛ λ : [ (Q + Q)(λ + λ) ] (x + x) = 0, M 2 ɛ M 2, D 2 ɛ D 2, K 2 ɛ K 2 }. MIMS Françoise Tisseur Quadratic eigenproblem 14 / 28

Eigenvalue Condition Numbers κ Q (λ) Q(λ)x = 0, y Q(λ) = 0, Q(λ) = λ 2 M + λ D + K. For λ simple, nonzero and finite, { λ κ Q (λ) = lim sup ɛ 0 ɛ λ : [ (Q + Q)(λ + λ) ] (x + x) = 0, M 2 ɛ M 2, D 2 ɛ D 2, K 2 ɛ K 2 }. Can show that [T. 01] κ Q (λ) = ( ) λ 2 M 2 + λ D 2 + K 2 y 2 x 2. λ y (2λM + D)x When λ = 0 or, use homogeneous form of Q. MIMS Françoise Tisseur Quadratic eigenproblem 14 / 28

Eigenvalue Condition Numbers κ Q (α, β) Homogeneous form: Q(α, β) = α 2 M + αβd + β 2 K. E vals are pairs (α, β) (0, 0) s.t. det Q(α, β) = 0, λ = α/β. MIMS Françoise Tisseur Quadratic eigenproblem 15 / 28

Eigenvalue Condition Numbers κ Q (α, β) Homogeneous form: Q(α, β) = α 2 M + αβd + β 2 K. E vals are pairs (α, β) (0, 0) s.t. det Q(α, β) = 0, λ = α/β. For (α, β) simple with right/left e vecs x, y, [Dedieu, T., 03] κ Q (α, β) = ( α 4 M 2 2 + α 2 β 2 D 2 2 + ) β 4 K 2 1/2 y 2 2 x 2 y ( β D α Q ᾱd β Q) (α,β) x. Angle between original and perturbed eigenvalues satisfies θ ( (α, β), ( α, β) ) κq (α, β) Q + o( Q ). Here Q = ( M, D, K ). Similar expression for κ C (α, β), C(λ) = [ D K ] [ I 0 + λ M ] 0 0 I. MIMS Françoise Tisseur Quadratic eigenproblem 15 / 28

Eigenvalue Condition Numbers κ Q (α, β) Homogeneous form: Q(α, β) = α 2 M + αβd + β 2 K. E vals are pairs (α, β) (0, 0) s.t. det Q(α, β) = 0, λ = α/β. For (α, β) simple with right/left e vecs x, y, [Dedieu, T., 03] κ Q (α, β) = ( α 4 M 2 2 + α 2 β 2 D 2 2 + ) β 4 K 2 1/2 y 2 2 x 2 y ( β D α Q ᾱd β Q) (α,β) x. Angle between original and perturbed eigenvalues satisfies θ ( (α, β), ( α, β) ) κq (α, β) Q + o( Q ). Here Q = ( M, D, K ). Similar expression for κ C (α, β), C(λ) = [ ] [ D I K 0 + λ M ] 0 0 I. Want κ Q (α, β) κ C (α, β) for all (α, β). MIMS Françoise Tisseur Quadratic eigenproblem 15 / 28

Backward Error η Q (x, α, β) For an approximate (right) eigenpair (x, α, β) of Q(α, β), η Q (x, α, β) = min{ ɛ : (Q(α, β) + Q(α, β))x = 0, M 2 ɛ M 2, D 2 ɛ D 2, K 2 ɛ K 2 }, where Q(α, β) = α 2 M + αβ D + β 2 K. Can show that [T.01] η Q (x, α, β) = Q(α, β)x 2 ( α 2 M 2 + α β D 2 + β 2 K 2 ) x 2. Similar expression for η C (z, α, β), C(λ) = [ D K ] [ I 0 + λ M ] 0 0 I. MIMS Françoise Tisseur Quadratic eigenproblem 16 / 28

Backward Error η Q (x, α, β) For an approximate (right) eigenpair (x, α, β) of Q(α, β), η Q (x, α, β) = min{ ɛ : (Q(α, β) + Q(α, β))x = 0, M 2 ɛ M 2, D 2 ɛ D 2, K 2 ɛ K 2 }, where Q(α, β) = α 2 M + αβ D + β 2 K. Can show that [T.01] η Q (x, α, β) = Q(α, β)x 2 ( α 2 M 2 + α β D 2 + β 2 K 2 ) x 2. Similar expression for η C (z, α, β), C(λ) = [ D K Want η Q (z 1, α, β) η C (z, α, β), z = [ z 1 z 2 ]. ] [ I 0 + λ M ] 0 0 I. MIMS Françoise Tisseur Quadratic eigenproblem 16 / 28

Eigenvalue Parameter Scaling Let λ = µγ, γ 0 and convert Q(λ) = λ 2 M + λd + K to δq(µγ) = µ 2 (γ 2 δm) + µ(γδd) + δk = µ 2 M + µ D + K =: Q(µ). Choose γ such that the linearization process does not affect the eigenvalue condition numbers, i.e., κ Q (α, β) κ C (α, β) for all e vals (α, β). the standard solution process in numerically stable, i.e., η Q (z[ 1, α, ] β) η C (z, α, β) for all e vals (α, β), where z1 z =. z 2 MIMS Françoise Tisseur Quadratic eigenproblem 17 / 28

Try γ = exp(r), where r is a tropical root of a tropical scalar quadratic (proposed by Gaubert & Sharify, 09). MIMS Françoise Tisseur Quadratic eigenproblem 17 / 28 Eigenvalue Parameter Scaling Let λ = µγ, γ 0 and convert Q(λ) = λ 2 M + λd + K to δq(µγ) = µ 2 (γ 2 δm) + µ(γδd) + δk = µ 2 M + µ D + K =: Q(µ). Choose γ such that the linearization process does not affect the eigenvalue condition numbers, i.e., κ Q (α, β) κ C (α, β) for all e vals (α, β). the standard solution process in numerically stable, i.e., η Q (z[ 1, α, ] β) η C (z, α, β) for all e vals (α, β), where z1 z =. z 2

Tropical Scalar Polynomials Let (R { },, ) be the tropical semiring with a b = max(a, b), a b = a+b for all a, b R { }. The piecewise affine function p(x) = d k=0 p k x k = max 0 k d (p k + kx), p k R { } is a tropical polynomial of degree d. The tropical roots of p(x) are the points of nondifferentiability of p(x). MIMS Françoise Tisseur Quadratic eigenproblem 18 / 28

Computation of Tropical Roots Let p(x) = d k=0 p k x k = max(p 0, p 1 + x,..., p d + dx). Upper boundary of convex hull of (k, p k ), k = 0: d. Tropical roots are minus the slopes of the segments (Legendre-Fenchel duality). Horizontal width of segment gives multiplicity. p(x) = max(2, 1+x, 3+2x, 3+3x, 1+4x, 1 2 +5x, 2+6x, 1+7x) has roots 1 2, 1 2, 0, 1 3, 1 3, 1 3, 3. p k 3 2 1 0 1 2 3 4 5 6 7 k MIMS Françoise Tisseur Quadratic eigenproblem 19 / 28

Tropical Roots (cont.) Tropical roots can be computed in linear time. Classical roots of p(x) = a 0 + a 1 x + + a n x n can be bounded in terms of tropical roots of p trop (x) = d k=0 p k x k ( Sharify, 11). Let r 1, r 2 be the tropical roots of p trop (r) = max(log( K ), log( D ) + r, log( M ) + 2r). When r 1 r 2 and M, D, K are well conditioned, e r 1 λmax (Q) and e r 2 λmin (Q), where Q(λ) = λ 2 M + λd + K (Gaubert & Sharify, 09). MIMS Françoise Tisseur Quadratic eigenproblem 20 / 28

Tropical Scaling Let p trop (r) = max(log( K ), log( D ) + r, log( M ) + 2r). Convert Q(λ) to δq(µγ), where γ = e r, r is a tropical root of p trop, δ = e ptrop(r). If D 2 2 M 2 K 2 then r 1 = r 2 (one double root). Can show that, for all e vals. η Q η C κ Q κ C Otherwise, two distinct tropical roots r 1 > r 2. Can show { r = r1 and λ γ, that, if η Q η C κ Q κ C r = r 2 and λ γ. MIMS Françoise Tisseur Quadratic eigenproblem 21 / 28

Beam Pb: Λ(C), Λ(L 2 ) before/after Scaling 3 2 1 0 1 2 3 4 x 106 4 15 10 5 0 1 2 3 4 x 106 3 2 1 0 3 2 1 0 1 2 3 4 x 106 4 15 10 5 0 3 2 1 0 1 2 3 4 x 106 4 4 15 10 5 0 15 10 5 0 MIMS Françoise Tisseur Quadratic eigenproblem 22 / 28

Modified Hospital Problem Damping added s.t. D 2 2 M 2 K 2. γ FLV = ( K 2 M 2 ) 1/2 56. Two tropical roots: γ + 3.7 10 3 and γ 0.8. Backward error 10 12 10 14 10 16 no scaling FLV 10 1 10 0 10 1 10 2 10 3 λ Backward error 10 12 10 14 10 16 tropical γ tropical γ + 10 1 10 0 10 1 10 2 10 3 λ MIMS Françoise Tisseur Quadratic eigenproblem 23 / 28

Deflation of 0 and eigenvalues Transform C(λ) = [ γδd δk S 11 S 12 S 13 0 S 22 S 23 0 0 0 n rk ] [ I 0 λ γ 2 δm 0 λ where r M = rank(m) and r K = rank(k ). 0 I ] into T 11 T 12 T 13 0 0 n rm T 23 0 0 I n rk 2 QR fact with col piv and 1 COD if r M < n and r K < n. Make use of block structure of C(λ). Call QZ on S 11 λt 11, with T 11 usually upper triang. Q(λ) nonregular if S 22 singular. Cost of deflation negligible compared with overall cost. MIMS Françoise Tisseur Quadratic eigenproblem 24 / 28,

Some QEPs from NLEVP Collection η Q (x, λ): backward error of computed eigenpair (x, λ). polyeig quadeig Problem n τ Q η Q (x, λ) η Q (x, λ) η Q (y, λ) power plant 8 7e-1 1e-8 4e-16 5e-17 cd player 60 9e+3 2e-10 7e-16 2e-15 speaker box 107 2e-5 2e-11 2e-16 4e-16 damped beam 200 2e-4 3e-9 1e-15 1e-15 shaft 400 1e-6 9e-8 9e-16 6e-16 railtrack 1005 2e1 2e-8 2e-15 8e-15 quadeig is backward stable for τ Q < 1, where τ Q = A 1 / A 2 A 0. MIMS Françoise Tisseur Quadratic eigenproblem 25 / 28

Some Timings polyeig quadeig Problem n Λ (Λ, X) Λ (Λ, X) acoustic wave 2D 870 118s 202s 114s 191s damped beam 1000 92s 156s 97s 163s spring 1000 182s 272s 94s 170s railtrack2 1410 129s 306s 79s 113s railtrack2: QEPs with singular M, K. MIMS Françoise Tisseur Quadratic eigenproblem 26 / 28

Extension to Higher Degree Polynomials P(λ)x = (λ l A l + + λa 1 + A 0 )x = 0. Use Fiedler linearization: F(λ) = λ A l I...... I A l 1 A l 2 A 1 I I... I Stability/conditioning similar to companion forms. Deflation of 0 and e vals easy to implement. A 0 Work in progress: scaling strategy (Betcke s scaling, tropical roots, tropical eigenvalues,... ).. MIMS Françoise Tisseur Quadratic eigenproblem 27 / 28

Summary quadeig is backward stable for not too heavily damped problems. Tropical mathematics useful for e val scaling. Deflation strategy can produce significant speedups. Returns e vals, right & left e vecs, e val condition numbers, b errs of right/left approx. eigenpairs. MATLAB function available. Fortran implementation available soon. Extension to polynomial eigenproblem of degree l > 2. For papers, eprints and codes, http://www.ma.man.ac.uk/~ftisseur/ MIMS Françoise Tisseur Quadratic eigenproblem 28 / 28

References I T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. MIMS EPrint 2011.116, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, Dec. 2011. 27 pp. To appear in ACM Trans. Math. Software. J.-P. Dedieu and F. Tisseur. Perturbation theory for polynomial eigenvalue problems in homogeneous form. Linear Algebra Appl., 358(1-3):71 94, 2003. MIMS Françoise Tisseur Quadratic eigenproblem 24 / 28

References II H.-Y. Fan, W.-W. Lin, and P. Van Dooren. Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl., 26(1):252 256, 2004. S. Gaubert and M. Sharify. Tropical scaling of polynomial matrices. volume 389 of Lecture Notes in Control and Information Sciences, pages 291 303. Springer-Verlag, Berlin, 2009. S. Hammarling, C. J. Munro, and F. Tisseur. An algorithm for the complete solution of quadratic eigenvalue problems. To appear in ACM Trans. Math. Software, 2012. MIMS Françoise Tisseur Quadratic eigenproblem 25 / 28

References III N. J. Higham, R.-C. Li, and F. Tisseur. Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl., 29(4):1218 1241, 2007. N. J. Higham, D. S. Mackey, and F. Tisseur. The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl., 28(4):1005 1028, 2006. N. J. Higham, D. S. Mackey, F. Tisseur, and S. D. Garvey. Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Internat. J. Numer. Methods Eng., 73(3):344 360, 2008. MIMS Françoise Tisseur Quadratic eigenproblem 26 / 28

References IV M. Sharify. Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis: Application to the Optimal Assignment Problem and to the Accurate Computation of Eigenvalues. PhD thesis, Ecole Polytechnique, 2011. 146 pp. F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl., 309:339 361, 2000. MIMS Françoise Tisseur Quadratic eigenproblem 27 / 28

References V F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43(2):235 286, 2001. MIMS Françoise Tisseur Quadratic eigenproblem 28 / 28