A generalization of Fibonacci and Lucas matrices

Similar documents
A NOTE ON PASCAL S MATRIX. Gi-Sang Cheon, Jin-Soo Kim and Haeng-Won Yoon

On Generalized Fibonacci Numbers

General Properties Involving Reciprocals of Binomial Coefficients

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

Matrix representations of Fibonacci-like sequences

On the Jacobsthal-Lucas Numbers by Matrix Method 1

Decoupling Zeros of Positive Discrete-Time Linear Systems*

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

A Note On The Exponential Of A Matrix Whose Elements Are All 1

On the Number of 1-factors of Bipartite Graphs

ON THE HADAMARD PRODUCT OF BALANCING Q n B AND BALANCING Q n

A Study on Some Integer Sequences

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

Chapter 6: Determinants and the Inverse Matrix 1

The inverse eigenvalue problem for symmetric doubly stochastic matrices

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

Fibonacci numbers and orthogonal polynomials

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Stochastic Matrices in a Finite Field

Applied Mathematics Letters. On the properties of Lucas numbers with binomial coefficients

1 Last time: similar and diagonalizable matrices

ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS

1. By using truth tables prove that, for all statements P and Q, the statement

Some Results on Certain Symmetric Circulant Matrices

On the Fibonacci-like Sequences of Higher Order

Hoggatt and King [lo] defined a complete sequence of natural numbers

The Binet formula, sums and representations of generalized Fibonacci p-numbers

The r-generalized Fibonacci Numbers and Polynomial Coefficients

On Matrices Over Semirings

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Eigenvalues and Eigenvectors

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Fibonacci polynomials, generalized Stirling numbers, and Bernoulli, Genocchi and tangent numbers

MATH10212 Linear Algebra B Proof Problems

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

On Second Order Additive Coupled Fibonacci Sequences

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

CALCULATION OF FIBONACCI VECTORS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables

Some identities involving Fibonacci, Lucas polynomials and their applications

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

ON SOME RELATIONSHIPS AMONG PELL, PELL-LUCAS AND MODIFIED PELL SEQUENCES

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

4 The Sperner property.

Some Trigonometric Identities Involving Fibonacci and Lucas Numbers

On the Linear Complexity of Feedback Registers

LECTURE NOTES, 11/10/04

Lecture 8: October 20, Applications of SVD: least squares approximation

A Combinatoric Proof and Generalization of Ferguson s Formula for k-generalized Fibonacci Numbers

Complex Analysis Spring 2001 Homework I Solution

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia

SOME TRIBONACCI IDENTITIES

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

Self-normalized deviation inequalities with application to t-statistic

c 2006 Society for Industrial and Applied Mathematics

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

On Summability Factors for N, p n k

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.co] 23 Mar 2016

Random Models. Tusheng Zhang. February 14, 2013

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Roger Apéry's proof that zeta(3) is irrational

On the Inverse of a Certain Matrix Involving Binomial Coefficients

Enumerative & Asymptotic Combinatorics

Some Tauberian theorems for weighted means of bounded double sequences

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones

Math 475, Problem Set #12: Answers

Estimation of Backward Perturbation Bounds For Linear Least Squares Problem

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

The 4-Nicol Numbers Having Five Different Prime Divisors

Householder s approximants and continued fraction expansion of quadratic irrationals

A Note on Matrix Rigidity

Some p-adic congruences for p q -Catalan numbers

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

On Divisibility concerning Binomial Coefficients

Advanced Stochastic Processes.

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

CALCULATING FIBONACCI VECTORS

Transcription:

Discrete Applied Mathematics 56 28) 266 269 wwwelseviercom/locate/dam A geeralizatio of Fioacci ad Lucas matrices Predrag Staimirović, Jovaa Nikolov, Iva Staimirović Uiversity of Niš, Departmet of Mathematics, Faculty of Sciece, Višegradska 33, 8 Niš, Seria Received 27 Feruary 27; received i revised form 2 Septemer 27; accepted 29 Septemer 27 Availale olie 2 Feruary 28 Astract We defie the matrix U a,,s) of type s, whose elemets are defied y the geeral secod-order o-degeerated sequece ad itroduce the otio of the geeralized Fioacci matrix F a,,s), whose ozero elemets are geeralized Fioacci umers We oserve two regular cases of these matrices s ad s ) Geeralized Fioacci matrices i certai cases give the usual Fioacci matrix ad the Lucas matrix Iverse of the matrix U a,,s) is derived I partial case we get the iverse of the geeralized Fioacci matrix F a,,) ad later kow results from Gwag-Yeo Lee, Ji-Soo Kim, Sag-Gu Lee, Factorizatios ad eigevalues of Fioaci ad symmetric Fioaci matrices, Fioacci Quart 4 22) 23 2; P Stǎicǎ, Cholesky factorizatios of matrices associated with r-order recurret sequeces, Electro J Comi Numer Theory 5 2) 25) #A6] ad Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)] Correlatios etwee the matrices U a,,s), F a,,s) ad the geeralized Pascal matrices are cosidered I the case a, we get kow result for Fioacci matrices Gwag-Yeo Lee, Ji-Soo Kim, Seog-Hoo Cho, Some comiatorial idetities via Fioacci umers, Discrete Appl Math 3 23) 527 534] Aalogous result for Lucas matrices, origiated i Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)], ca e derived i the partial case a 2, Some comiatorial idetities ivolvig geeralized Fioacci umers are derived c 27 Elsevier BV All rights reserved Keywords: Fioacci umer; Lucas umer; Fioacci matrix; Lucas matrix Itroductio The Fioacci umers {F } are the terms of the sequece,,, 2, 3, 5, where each term is the sum of the two precedig terms, ad we get thigs started with ad as F ad F You caot go very far i the lore of Fioacci umers without ecouterig the compaio sequece of Lucas umers {L }, which follows the same recursive patter as the Fioacci umers, ut egis with L 2 ad L The sequece of Lucas umers is therefore 2,, 3, 4, 7, 3] We also oserve so-called geeralized Fioacci umers, {F a,) }, which satisfy the same recursive formula F a,) 2 Fa,) Fa,),,,, ut startig with aritrary iitial values F a,) a ad F a,), see for example 9,6,2], ], Chapter 7)) Correspodig author Fax: 38 85334 E-mail addresses: pecko@pmfiacyu P Staimirović), JovaaNikolov@gmailcom J Nikolov), IvaStaimirovic@gmailcom I Staimirović) 66-28X/$ - see frot matter c 27 Elsevier BV All rights reserved doi:6/dam27928

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 267 The Fioacci matrix F f ],, ) is defied y 7]: f { Fi, i,, i < ) The iverse ad Cholesky factorizatio of the Fioacci matrix are give i 7] The relatios etwee the Pascal matrix ad the Fioacci matrix are studied i 8] As a aalogy of the Fioacci matrix, the Lucas matrix L l ],, ) is defied i 6]: l { Li, i,, i < 2) I the paper ] the author ivestigated the iverse ad Cholesky factorizatio of the matrix U with etries u { Ui, i,, i <, 3) where U is the o-degeerated secod order sequece U AU BU, δ A 2 4B real, ad where A, B, U are itegers ad U ie A B) I ] the author also geeralized these results to r-order recurret sequece satisfyig U U U 2r, U aritrary Results otaied i ] iclude kow facts aout the Fioacci matrix 7,8] i the case U, A B But, results aout the Lucas matrices from 6] are ot icluded Lucas sequece is geerated y the associated sequece V which satisfy V 2, V a Our goal i this paper is to geeralize all results aout the Fioacci ad Lucas matrices The purpose of this paper is to demostrate that kow properties of Fioacci, Lucas matrices ad the matrices defied i ] are valid for a more geeral class of matrices, itroduced i Sectio 2 Throughout the paper we adopt the followig two covetios: ad ) k for k >, eve i the case k By raka) we deote the rak of matrix A The paper is orgaized as follows I Sectio 2 we defie the matrix U a,,s) umers U a,) satisfyig the geeral secod order o-degeerated recurrece formula U a,) of type s, whose etries are a,) AU BU a,), δ A 2 4B real, ad iitial coditios U a,) a, U a,) I the case A B we itroduce the geeralized Fioacci matrix F a,,s) of type s, whose ozero elemets are geeralized Fioacci umers F a,) Oly two cases geeratig regular matrices are s ad s Geeralized Fioacci matrices reduce to kow defiitio of the usual Fioacci matrix i the cases s, a, ad s, a, I the case a 2,, s we otai the matrix whose ozero etries are Lucas umers, ad arraged as i the Fioacci matrix This matrix is called the Lucas matrix 6] At this momet we cosider the matrices U a,,) ad F a,,) Iverses of the geeralized Fioacci matrix ad for the matrix U a,,) are derived I the partial case a, we get kow result aout the iversio of the usual Fioacci matrix from 7] Similarly, i the case a 2, we otai the iverse of the Lucas matrix, origiated i 6] Moreover, i Sectio 2 we cosider the matrix U a,,) defied y meas of the geeral o-degeerated secod-order recurret sequece, ad geeralize Propositio 2 from ] Various correlatios etwee the matrix U a,,s) ad the Pascal matrix of the first ad the secod kid are cosidered i Sectio 3 Correspodig results for the geeralized Fioacci matrix F a,,) are give as corollaries Partial case a, produces kow result from 8] I the case a 2, we derive aalogous results for Lucas matrices, ivestigated i 6] I Sectio 4 we get some comiatorial idetities ivolvig geeralized Fioacci umers ad iomial coefficiets 2 Geeralized Fioacci matrix ad its iverse By F a,) we deote the -th geeralized Fioacci umer, geerated y the Fioacci recursive formula ad y the iitial values F a,) a, F a,) Notios of Fioacci ad Lucas matrix are geeralized i the followig defiitio Defiitio 2 Let F a,) e the -th geeralized Fioacci umer, where the startig memers of the Fioacci array are F a,) a ad F a,), ad where a, C The geeralized Fioacci matrix of type s ad of the order

268 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269, deoted y F a,,s) f a,,s) { f a,,s) ], is defied y F a,) i, i s,,, 2), i s < It is clear that the iteger s meas the shift of o-zero elemets with respect to mai diagoal We also defie a geeralizatio U a,,s) u a,,s) ] of the matrix F a,,s) ad the matrix U from 3) Defiitio 22 The matrix U a,,s) u a,,s) { U a,) i, i s,, i s <, u a,,s) ] is defied y 22) where the secod order recurret sequece U a,) satisfies the followig coditios: U a,) AU a,) a,) BU 2, U a,) a, U a,), A 2 4B > 23) Remark 2 a) Geeralized Fioacci matrices F,,) ad F,,) are oth idetical to the usual Fioacci matrix defied i ) ) The geeralized Fioacci matrix F 2,,) correspods to Lucas matrix, defied i 2) c) The matrix U,,) reduces to the matrix U defied i 3) Example 2 The 6 6 geeralized Fioacci matrix of type is equal to a F a,,) a 2 a 6 2a 3 a 2 a 3a 5 2a 3 a 2 a 5a 8 3a 5 2a 3 a 2 a The 6 6 geeralized Fioacci matrix of type is defied y a a a F a,,) a 2 a a 6 2a 3 a 2 a a 3a 5 2a 3 a 2 a a 5a 8 3a 5 2a 3 a 2 a The matrix U a,,) 4 is equal to U a,,) 4 A ab B AA ab) A ab BA ab) AB AA ab)) B AA ab) A ab Propositio 2 The odegeerated secod-order recurret sequece U a,), defied i 23), satisfies the followig geeralizatio of the Biet s Fioacci umer formula U a,) c α c 2 β, 24)

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 269 where c aa2 4B) 2 a A) A 2 4B 2A 2, 25) 4B) c 2 aa2 4B) 2 a A) A 2 4B 2A 2, 26) 4B) α A A 2 4B 2, β A A 2 4B 27) 2 I the case s > it is ecessary to use geeralized Fioacci umers F a,) ad the umers U a,) with egative idices Recurret defiitio of the geeralized Fioacci umers ca e expaded for egative idices usig 24) 27), similarly as for the Fioacci umers i ] Lemma 2 The followig idetity is valid for the secod order o-degeerated recurret sequece U a,) ad for two aritrary itegers satisfyig i 2: a 2 B aa 2 ) Proof By usig 27) we otai αβ B, α β A, α β satisfyig ) k ak 2 B k U a,) k ik ab 2 U a,) i B U a,) i 28) By applyig 24) ad simple trasformatios, we otai the followig: Usig we get a 2 B aa 2 ) a 2 B aa 2 ) a2 B aa 2 3 ab α a 2 B aa 2 ) ) k ak 2 B k U k ) k 2 ab ) i α a2 B aa 2 3 A 2 4B 29) a,) ik ) k ak 2 Bk k c α ik c 2 β ik) ab ) k 2 Bα i c ab ) ) k 2 Bβ i c 2 α β ab α ) k ak 2 B k U k ab α c ab α With cosideratio of 29), we have a 2 B aa 2 ), )i ) k ak 2 B k U k a,) ik ab ) k 2 β α i ab β c 2 ab β a,) ik )i ab β ab β β i ) B ) i

26 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 a2 B aa 2 3 ab β) α i α ab )i ) c ab α) β i β ab )i ) c 2 a A a2 B 2 c ab αi α ab ) i Bα i B ab ) ) i ab c 2 βi β ab ) i Bβ i B ab ) )] i By groupig similar memers, usig c c 2 a, c α c 2 β U a,) ad usig 24) ad 29), oe ca verify the followig: a 2 B aa 2 ) ) k ak 2 B k U k ab c α i c 2 β i ) c α c 2 β) a,) ik ab B c α i c 2 β i ) Bc c 2 ) ab ab 2 U a,) i U a,) ab ) i B U a,) i ab ) i ) i ] ab ) i The proof ca e completed y usig U a,) I the partial case A B we otai the followig result for the geeralized Fioacci umers Corollary 2 For the geeralized Fioacci umers F a,), ad for two aritrary itegers satisfyig i 2 the followig is valid: a 2 a 2 ) ) k ak 2 k Fa,) ik a 2 Fa,) i I the case a 2,, from the previous corollary we get kow result from 6] Corollary 22 For the Lucas umers ad each i 2 the followig is valid: 5 ) k 2 k 2 L ik 2L i L i Fa,) i 2) Theorem 2 The iverse U a,,) u a,,) u a,,) ] of the matrix U a,,) u a,,) ] ) is equal to ) i a2 B aa 2 i a i 2 B i, i 2, ab A 2, i,, i,, i < 2) Proof Let k u a,,) i,k u a,,) k, c Oviously c for i < I the case i oe ca verify the followig: c i,i u a,,) i,i u a,,) i,i

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 26 I the case i we otai c, u a,,), u a,,), u a,,), u a,,), A Ba) ) ab A 2 For i 2, y applyig results of Lemma 2 ad 23) ad 2) we otai c k u a,,) i,k u a,,) k, u a,,) u a,,), u a,,) u a,,) U a,) i U a,) i ab A 2 U a,), u a,,) i,k u a,,) k, i a 2 B aa 2 ) ab A 2 U a,) i ab 2 U a,) i B U a,) i a,) a,) U i AU i BU a,) i ) Therefore, we verify U a,,) U a,,) U a,,) U a,,) I ) k ak 2 B k U k a,) ik I, where I is idetity matrix I a similar way oe ca verify Example 22 The iverse of the matrix U a,,) 4 is equal to A ab 2 B Ba 2 Aa 2) A ab 3 2 ab 2 Ba 2 Aa 2) B Ba 2 Aa 2) A ab 4 3 2 Remark 22 Propositio 2 from ] ca e derived y placig a i 2) I the partial case A B from Theorem 2 we otai the iverse of the geeralized Fioacci matrix of type Corollary 23 Let F a,,) F a,,), deoted y F a,,) f a,,) ], is equal to f a,,) ],, e geeralized Fioacci matrix of type The iverse of ) i a2 a 2 i a i 2, i 2, f a,,) a 2, i,, i,, i < 22)

262 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 Example 23 The iverse of the geeralized Fioacci matrix F a,,) 6 is equal to a 2 a 2 a 2 3 a 2 aa2 a 2 ) a 2 a 2 4 3 a 2 a 2 a 2 a 2 ) 5 aa2 a 2 ) a 2 a 2 4 3 a3 a 2 a 2 ) a 2 a 2 a 2 ) 6 5 aa2 a 2 ) a 2 a 2 4 3 I the case a 2, we get the iverse Lucas matrix, derived i 6] Corollary 24 The iverse of the Lucas matrix L 5) i 2 i 2, i 2, l i, 3, i,, i,, otherwise l i, ],, ) is equal to a 2 a 2 I the case a, we get the iverse Fioacci matrix, which is the kow result from 7] Corollary 25 The iverse Fioacci matrix F f i, ],, ) is equal to, i 2, f i,, i,, otherwise I the followig theorem we study rak of the matrix U a,,s) ): Theorem 22 Matrices U a,,s) of the order > 2 of a aritrary type s > or s < are sigular The geeralized ad U a,,) are regular Fioacci matrices U a,,s) 2 are always regular I the case matrices U a,,) Proof I the case s < the proof is trivial, sice s diagoal parallels elow the mai diagoal i U a,,s) are filled ) s < Deote y R i the i-th I the case s the last s rows ie the rows R s,, R ) i U a,,s) are completely For these rows it is ot difficult to verify from 23) y zeros ie the last s colums are zero colums), ad therefore raku a,,s) row of the matrix U a,,s) filled y the elemets U a,) i R i AR i B R i2, i s 2,, Therefore, etwee the rows R s,, R there is oly oe liearly idepedet row i the case s, ad oly two liearly idepedet i the case s > O the other had, it is clear that rows R,, R s are liearly idepedet Hece, i the case s > raku a,,s) ) { s <, s, 2, s > so the matrix U a,,s) is sigular From the previous argumetatio, it is ot difficult to verify that oth U a,,) matrices ad U a,,) are regular

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 263 Example 24 The last two colums of the matrix U a,,2) 4 A 2 a AB B A 3 a A 2 B 2A B ab 2 A 2 a AB B are the zero colums, ad raku a,,2) 4 ) 2 O the other had, the rak of the matrix U a,,2) 4 is 3, ecause of R 4 AR 3 B R 2 a a A B A ab a a A B A 2 ab A B A ab a A 3 ab A 2 2B A ab 2 A 2 ab A B A ab 3 Geeralized Fioacci matrix ad Pascal matrices Various types of Pascal matrices are ivestigated i,2,4,5,4,5] The geeralized Pascal matrix of the first kid P x] p x; )],,, is defied i 4]: ) i x i, i, p x; ) 3), i < I the case x, the geeralized Pascal matrix of the first kid reduces to ther well-kow Pascal matrix P p )],,,, which is defied i 3,4]: ) i, i, p ) 32), i < I the followig theorem we defie the matrix G x; a, ] g x; a, )],,, which gives a correlatio etwee the matrix U a,,) ad the geeralized Pascal matrix of the first kid: Theorem 3 The matrix G x; a, ] x, ), whose etries are defied y ) ) g x; a, ) x i ab A i 2 xi 2 x i satisfies i2 ) ik a2 B aa 2 ik a ik2 B ik x k k ) ] k, 33) P x] U a,,) G x; a, ] 34) Proof It is sufficiet to verify U a,,) P x] G x; a, ] It is evidet that g x; a, ) for i <, which is of the form 33) So, it remais to verify all the other cases The cases i ad i ca e simply verified:

264 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 g, x; a, ) u a,,), p x;, ) x ) x ; g, x; a, ) u a,,), p x;, ) u a,,), p x;, ) ab A 2 x ) )] 2 x x ab A 2 x I the last case, i 2, y applyig results of Theorem 2 we get g x; a, ) u a,,) i,i p x; ) u a,,) i,i p x; i, ) ) i xi i2 k which is also of the form 33) ab A 2 x i ) ik a2 B aa 2 ik i 2 ) i2 k a ik2 B ik x k u a,,) i,k p x; k, ) ) k, I the case A B we get aalogous result for the geeralized Fioacci matrix Corollary 3 The matrix G x; a, ] x, ), whose etries are defied y ) ) g x; a, ) x i i 2 i2 xi satisfies P x] F a,,) G x; a, ] a 2 x i k ) ik a2 a 2 ik a ik2 x k Moreover, the last corollary produces a kow result from 8] i partial case a, ad x : Corollary 32 Let M e the matrix with elemets defied y ) ) ) i i 2 i 3 m i The Pascal matrix ad the Fioacci matrix are related with P F M Proof The proof follows from M G ;, ] I the case a 2,, from Corollary 3 we give a correspodig result for Lucas matrices 6]: ) ] k, Corollary 33 The geeralized Pascal matrix of the first kid ad the Lucas matrix satisfy P x] L G x; 2, ], where ) ) i i 2 g x; 2, ) x x i 3x i 5) i i2 ) ] i2 k x ) k 2 ) k 2 After the sustitutio x i the previous result, the followig result immediately follows: Corollary 34 The Pascal matrix ad the Lucas matrix satisfy P L G ; 2, ], where ) ) i i 2 i2 ) i2 k g ; 2, ) 3 52) 2) k k k

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 265 I the followig theorem we defie the matrix H x; a, ] h x; a, )],,, which gives a similar correlatio etwee the matrix U a,,) ad the geeralized Pascal matrix of the first kid: Theorem 32 The matrix H x; a, ], ), defied y ) h x; a, ) x i i x ab A 2 x satisfies ) k a2 B aa 2 a k 2 B k x k k ) ] i 35) k P x] H x; a, ]U a,,) 36) Proof Similar as the proof of Theorem 3 A aalogous result for the geeralized Fioacci matrix ca e derived i the case A B Corollary 35 The matrix H x; a, ], ), defied y ) h x; a, ) x i i x a ) i 2 x ) k a2 a 2 ) ] i a k 2 x k k k satisfies P x] H x; a, ]F a,,) A aalogous result for Lucas matrices is 6]: Corollary 36 The Lucas matrix satisfies P x] H x; 2, ]L, where ) ) i i h x; 2, ) x x i 5x 3 ) 2 2 ) ] i ) k 2 k x k k The geeralized Pascal matrix of the secod kid Q x] q x; )],,, is defied y 4]: ) i x i 2, i, q x; ), i < 37) Theorem 33 The matrices S x; a, ] s x; a, )] ad T x; a, ] t x; a, )],,,, ) whose etries are defied y ) ) s x; a, ) x i ab A i 2 xi2 2 x i3 i2 ) ik a2 B aa 2 ik k a ik2 B ik x k2 ) ] k, 38)

266 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 ) ) t x; a, ) x i i x 2 ab A i 2 x satisfy Q x] U a,,) S x; a, ], Q x] T x; a, ]U a,,) ) k a2 B aa 2 a k 2 B k x k2 k ) ] i 39) k 3) 3) Proof Similar as the proof of Theorem 3 Corollary 37 The matrices S x; a, ] s x; a, )] ad T x; a, ] t x; a, )],,,, ) whose etries are defied y ) s x; a, ) x i xi2 a ) i 2 2 x i3 satisfy i2 ) ik a2 a 2 ik k t x; a, ) x i x 2 Q x] F a,,) S x; a, ], Q x] T x; a, ]F a,,) ) i a ik2 x k2 a 2 x ) k a2 a 2 a k ) i k 2 x k2 ) ] k, ) ] i k Theorem 34 I the case the matrix G a ; a, ] is defied y g a ; a, ) a)i 2 i ad satisfies P a ] F a,,) G a ] ; a, ) i a 2 a )a ) i 2 a 2 a 2 ) )] i 2 32) 33) Proof Follows from Corollary 3 ad the followig simple comiatorial idetity: i2 ) ) k i 2 k I a similar way as Theorem 34, the followig result ca e proved: Theorem 35 The matrix S a ; a, ] ) is defied y s a ; a, ) a)i 4 i ) i a 2 a 2 a) i ) )] i 2 2 34)

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 267 ad satisfies Q a ] F a,,) S a ] ; a, 35) I the partial case a 2, Theorems 34, 35 ad Corollary 37 yield the followig results: Corollary 38 The Lucas matrix satisfies: P 2] L G 2; 2, ], Q 2] L S 2; 2, ], P 2] H 2; 2, ]L, Q 2] T 2; 2, ]L, where ) ) )] i i 2 i 2 g 2; 2, ) 2) 4 i 2 6 5, ) ) )] i i 2 i 2 s 2; 2, ) 2) 4 i 4 6, ) ) i i ) h 2; 2, ) 2) 4 ] i i 2 6 5, k t 2; 2, ) 2) i 4 4 ) i 6 i ) ) i 5 5 k 3 ) ] i 2 2 2k k 4 Some comiatorial idetities I this sectio we ivestigate some comiatorial idetities ivolvig the geeralized Fioacci umers Theorem 4 If are positive itegers satisfyig i 2, ad, we have a ) i i ) Fa,) i a 2 F a,) )a i 2 ) k a )a 2 Proof From 32) we derive the followig idetities: g, a ; a, ), g, a ; a, ) a) 2 ) a 2 a )a ) k 2 F a,) ik a 2 a Now, the proof ca e derived y applyig idetities 42) ad the ext idetity p a ) ; a ) ) i i, i,, i < together with 32), 33) ad 2) a) k 2 k ) a2 a 2 k 2 2 )] 4) )a 2 42)

268 P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 Theorem 42 If are positive itegers satisfyig i 2 ad, we have a ) ) i 2 i F a,) a 2 2 a 2 2 i Fa,) 2 i 2 )a ] ) ) k k k 2 a 2 a 2 a) 2 Proof From 34) we derive the followig idetities: s, a ) ; a, a2 2 2, F a,) ik a) k 4 k )] 43) s, a ) ; a, a2 2 2 )a ] 44) Now, the proof ca e derived y usig 44), the ext idetity q a ; ) ad 34), 35) ad 2) a ) ) i 2 i, i, i < Theorem 43 For r ad we have ) F a,) l r l r lr ) a 2 ) l 2 r k l2 kr ) lk a2 a 2 lk Proof I the partial case x from Corollary 3 we get g ; a, ) ) i a ) i 2 i2 2 ) ik a2 a 2 ik Now, the proof follows from ) p, r) r lr F a,) l g l,r ; a, ) I the partial case a, Theorem 43 reduces to Corollary 22 from 8] Corollary 4 For r ) k 3)! rk ) 2r ) k r) 2) F k r r )!k r)! kr a ik2 a lk2 ) k ) ] k r 45) Proof The proof ca e completed usig Theorem 43 ad Corollary 32, i the same way as i 8] 5 Coclusio I the preset paper we itroduce the matrix U a,,s) of type s, whose etries are umers U a,) satisfyig the geeral secod order o-degeerated recurrece formula U AU BU, δ A 2 4B real, ad iitial coditios U a,) a, U a,) I the case A B we defie the geeralized Fioacci matrix F a,,s) of type s, whose etries are geeralized Fioacci umers satisfyig kow recursive formula ad iitial coditios F a,) a, F a,) We oserve two regular cases s ad s ) of these matrices Geeralized Fioacci

P Staimirović et al / Discrete Applied Mathematics 56 28) 266 269 269 matrices of type s or s correspod to kow defiitio of the usual Fioacci matrix, i the case a, I the case a 2,, s we otai defiitio of the Lucas matrix from 6] Iversio of the matrix U a,,s) ad geeralized Fioacci matrix is cosidered I certai cases we get kow results from 7,,6] A correlatio etwee the geeralized Fioacci matrix ad the Pascal matrix of the first ad the secod kid is cosidered I two partial cases a,, s ad a,, s ) we get kow result from 8] We get some comiatorial idetities ivolvig geeralized Fioacci umers I the partial case a 2,, s we derive aalogous result for Lucas matrices, itroduced i 6] Refereces ] R Aggarwala, MP Lamoureux, Ivertig the Pascal matrix plus oe, Amer Math Mothly 9 22) 37 377 2] A Ashrafi, PM Giso, A ivolutory Pascal matrix, Liear Algera Appl 387 24) 277 286 3] R Brawer, M Pirovio, The liear algera of Pascal matrix, Liear Algera Appl 74 992) 3 23 4] GS Call, DJ Vellma, Pascal matrices, Amer Math Mothly 993) 372 376 5] Gi-Cheo, Ji-Soo Kim, Stirlig matrix via Pascal matrix, Liear Algera Appl 329 2) 49 59 6] AF Horadam, A geeralized Fioacci sequece, Amer Math Mothly 68 96) 455 459 7] Gwag-Yeo Lee, Ji-Soo Kim, Sag-Gu Lee, Factorizatios ad eigevalues of Fioaci ad symmetric Fioaci matrices, Fioacci Quart 4 22) 23 2 8] Gwag-Yeo Lee, Ji-Soo Kim, Seog-Hoo Cho, Some comiatorial idetities via Fioacci umers, Discrete Appl Math 3 23) 527 534 9] D Kalma, R Mea, The Fioacci umers exposed, Math Magazie 76 23) 67 8 ] T Koshy, Fioacci ad Lucas Numers with Applicatios, Wiley, New York, 2 ] P Stǎicǎ, Cholesky factorizatios of matrices associated with r-order recurret sequeces, Electro J Comi Numer Theory 5 2) 25) #A6 2] JE Walto, AF Horadam, Some further idetities for the geeralized Fioacci sequece {H }, Fioacci Quart 2 974) 272 28 3] Eric W Weisstei, Lucas Numer, i: MathWorld A Wolfram We Resource http://mathworldwolframcom/lucasnumerhtml 4] Z Zhag, The liear algera of geeralized Pascal matrix, Liear Algera Appl 25 997) 5 6 5] Z Zhag, J Wag, Beroulli matrix ad its algeraic properties, Discrete Appl Math 54 26) 622 632 6] Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)