Signal s(t) ima spektar S(f) ograničen na opseg učestanosti (0 f m ). Odabiranjem signala s(t) dobijaju se 4 signala odbiraka: δ(t kt s τ 2 ),

Similar documents
Analogne modulacije / Analog modulations

5 Analog carrier modulation with noise

EE303: Communication Systems

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

EE401: Advanced Communication Theory

Lecture 8 ELE 301: Signals and Systems

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013)

A First Course in Digital Communications

TEORIJA SKUPOVA Zadaci

Red veze za benzen. Slika 1.

Projektovanje paralelnih algoritama II

EE4061 Communication Systems

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

Example: Bipolar NRZ (non-return-to-zero) signaling

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

Digital Communications

2.1 Basic Concepts Basic operations on signals Classication of signals

EE6604 Personal & Mobile Communications. Week 12a. Power Spectrum of Digitally Modulated Signals

EE 224 Signals and Systems I Review 1/10

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

Fajl koji je korišćen može se naći na

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

LOPE3202: Communication Systems 10/18/2017 2

Lecture 7 ELE 301: Signals and Systems

Signals and Systems: Part 2

Signal Design for Band-Limited Channels

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

Analog Electronics 2 ICS905

TSKS01 Digital Communication Lecture 1

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

s o (t) = S(f)H(f; t)e j2πft df,

4 The Continuous Time Fourier Transform

Square Root Raised Cosine Filter

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

System Identification & Parameter Estimation

2A1H Time-Frequency Analysis II

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

Sinc Functions. Continuous-Time Rectangular Pulse

Mathcad sa algoritmima

Osnove telekomunikacija Osnove obrade signala potrebne za analizu modulacijskih tehnika prof. dr. Nermin Suljanović

Figure 1.1 (a) Model of a communication system, and (b) signal processing functions.

Review of Fourier Transform

EE 661: Modulation Theory Solutions to Homework 6

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2.

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA

2016 Spring: The Final Exam of Digital Communications

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva.

Summary II: Modulation and Demodulation

EE 637 Final April 30, Spring Each problem is worth 20 points for a total score of 100 points

Fourier Analysis and Power Spectral Density

Fundamentals of Noise

CLTI System Response (4A) Young Won Lim 4/11/15

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

ENGIN 211, Engineering Math. Laplace Transforms

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će

that efficiently utilizes the total available channel bandwidth W.

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Introduction to Probability and Stochastic Processes I

X b s t w t t dt b E ( ) t dt

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

1 Understanding Sampling

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

2 Frequency-Domain Analysis

Mobile Radio Communications

Chapter 5 Frequency Domain Analysis of Systems

Each problem is worth 25 points, and you may solve the problems in any order.

Digital Communications

Fig 1: Stationary and Non Stationary Time Series

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

Problem Sheet 1 Examples of Random Processes

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

5 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 21. April Subotica, SERBIA

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

Summary of Fourier Transform Properties

Time Series Analysis: 4. Linear filters. P. F. Góra

3.2 Complex Sinusoids and Frequency Response of LTI Systems

ENEE 420 FALL 2007 COMMUNICATIONS SYSTEMS SAMPLING

Then r (t) can be expanded into a linear combination of the complex exponential signals ( e j2π(kf 0)t ) k= as. c k e j2π(kf0)t + c k e j2π(kf 0)t

Fundamentals of the Discrete Fourier Transform

Chapter 5 Frequency Domain Analysis of Systems

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

EE5713 : Advanced Digital Communications

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Power Spectral Density of Digital Modulation Schemes

II - Baseband pulse transmission

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

Laplace Transforms Chapter 3

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Transcription:

Signali i sistemi Signal st ima spektar Sf ograničen na opseg učestanosti 0 f m. Odabiranjem signala st dobijaju se signala odbiraka: s t = st s t = st s t = st s t = st δt k, δt k τ 0, δt k τ i δt k τ, pri čemu je = f m i 0 < τ 0 < τ < τ < /. Smatrati da je signal st realan. Da li je na osnovu spektara signala odbiraka s i t i =,,, moguće rekonstruisati spektar originalnog signala? Odgovor potkrepiti odgovarajućim dokazom.

Signals and Systems The signal st is band-limited with the highest frequency component f m. Sampling of the signal st produce sampled signals: s t = st s t = st s t = st s t = st δt k, δt k τ 0, δt k τ and δt k τ, such that: = f m and 0 < τ 0 < τ < τ < /. Assume that the signal st is real. Is it possible to reconstruct spectrum of the signal st using the sampled signals s i t i =,,,? The answer should contain an explanation.

Rešenje Spektar signala s t je: S f = = st st k= π jk e τ 0 k= = = k= δt k τ 0 e jπft dt π jk e t τ0 e jπft dt π jk e τ 0 Sf k Pri traženju spektra S f iskorišćena je jednakost: k= δt k τ 0 = ste jπf k t dt k= π jk e t τ 0 do koje se može doći razvojem povorke delta impulsa u FR. Spektri ostalih signala se dobija na osnovu spektra signala s t jednostavnom zamenom τ 0 = 0, τ 0 = τ i τ 0 = τ te se dobijaju sledeće jednačine: S f = S f = S f = k= k= k= Sf k π jk e τ Sf k π jk e τ Sf k Zbog hermitske simetrije spektra signala st i periodičnosti spektara signala odbiraka dovoljno je posmatrati opseg učestanosti 0 f m. Na opsegu od 0 f m / dobijaju se sledeći spektri: S f = f m Sf + f m/ + Sf + Sf f m / + Sf f m S f = f m S f = f m S f = f m Sf + fm /e j π τ π 0 j + Sf + Sf f m /e τ π 0 j + Sf f m e τ 0 Sf + fm /e j π τ π j + Sf + Sf f m /e τ π j + Sf f m e τ Sf + fm /e j π τ π j + Sf + Sf f m /e τ π j + Sf f m e τ

odakle sledi: Sf = B S f + B S f + B S f + B S f f m A gde je: B = e j π τ 0 +τ τ e j π τ 0 τ +τ e j πτ 0 τ τ + e j πτ 0 τ τ + +e j π τ 0 τ +τ + e j π τ 0 +τ τ πτ τ B = j sin + e j πτ πτ sin e j πτ πτ sin πτ τ 0 B = j sin e j πτ 0 πτ sin + e j πτ πτ0 sin πτ0 τ B = j sin + e j πτ 0 πτ sin e j πτ πτ0 sin πτ0 τ πτ τ 0 πτ τ A = j sin + sin + sin +e j π τ 0 +τ τ e j π τ 0 τ +τ e j πτ 0 τ τ + e j πτ 0 τ τ + +e j π τ 0 τ +τ e j π τ 0 +τ τ πτ +j +e j πτ e j πτ 0 sin sin πτ0 + πτ sin πτ sin + e j πτ Na opsegu od f m / f m dobijaju se sledeći spektri: πτ sin S f = f m Sf + Sf f m/ + Sf f m + Sf f m / S f = f m S f = f m S f = f m odakle sledi: πτ0 sin π Sf + Sf j fm /e τ π 0 j + Sf f m e τ 6π 0 j + Sf f m /e τ 0 π Sf + Sf j fm /e τ π j + Sf f m e τ 6π j + Sf f m /e τ π Sf + Sf j fm /e τ π j + Sf f m e τ 6π j + Sf f m /e τ Sf = f m B 5 S f + B 6 S f + B 7 S f + B 8 S f A

gde je: B 5 = e j πτ 0 B 6 = e j 6πτ 0 B 7 = e j 6πτ B 8 = e j 6πτ A = e j 6πτ 0 +τ +τ e j πτ e j πτ e j πτ e j πτ e j πτ 0 e j πτ e j πτ 0 e j πτ e j πτ e j πτ e j πτ 0 e j πτ e j πτ e j πτ 0 e j πτ e j πτ 0 e j πτ e j πτ 0 e j πτ e j πτ 0 e j πτ e j πτ 0 e j πτ e j πτ + e j πτ e j πτ e j πτ e j πτ 0 e j πτ 5

Analogne modulacije Na slici prikazana je blok šema prijemnika KAM signala sa idealnim detektorom anvelope. Na ulaz prijemnika dolazi KAM signal kome je pridodat šum. Indeks modulacije je m 0, amplituda nosioca je U c, a učestanost nosioca je f c. Modulišući signal mt ima spektar u opsegu 0 f m i srednju snagu P m. Spektralna gustina srednje snage šuma data je izrazom S n f = /f +a gde je a pozitivna realna konstanta. Odrediti analitički izraz za odnos signal šum na izlazu prijemnika. Prilikom izvodenja smatrati da je snaga koristnog signala mnogo veća od snage šuma, da sinusna i kosinusna komponenta uskopojasnog šuma imaju istu srednju snagu i da su medusobno nekorelisane. Pomoć: Za x blisko nuli važi + x + x. Slika : Prijemnik sa detektorom anvelope

Analog Modulations A block scheme of AM signal receiver with an ideal envelope detector is shown in Fig.. The input signal is AM signal with additive noise. The modulation index is m 0, the carrier amplitude is U c, and the carrier frequency is f c. The modulating signal mt has limited spectrum up to f m and the power P m. The power spectrum density of noise signal is S n f = /f +a where a is positive real constant. Find an analytic expression for signal to noise ratio on the receiver output. Assume the following: the power of noise is small compared to the power of signal, sine and cosine components of bandpass noise have the same power and they are mutually uncorrelated. Hint: If x is close to 0 than + x + x. Figure : A receiver with envelope detector

Rešenje Signal na ulazu prijemnika je: ut = U c + m 0 mt cosπf c t + nt Kroz pojasni filtar prolazi celokupni modulisani signal, dok šum postaje uskopojasni, čija spektralna gustina srednje snage postaje: /f S n,c f = + a zaf c f m < f f c + f m 0 inače Signal na izlazu pojasnog filtra se može prikazati kao: u t = U c + m 0 mt cosπf c t+n c t cosπf c t+n s t sinπf c t = At cosπf c t+φt Anvelopa ovog signala ima oblik: At = U c + m 0 mt + n c t + n st = U c + m 0 mt + U c + m 0 mt + U c + m 0 mt + n c t n c t U c + m 0 mt + n c t U c + m 0 mt n ct U c + m 0 mt + Poslednja dva člana pod korenom su zanemarena pošto je snaga signala mnogo veća od snage šuma. To je iskorišćeno i pri drugoj aproksimaciji gde je koren zamenjen sa prva dva člana Tejlorovog reda. Potrebno je odrediti snagu kosinusne komponente uskopojasnog šuma. Autokorelacija šuma je: R N τ = lim T T T T ntnt + τdt = ntnt + τ Uvrštavanjem nt = n c t cosπf c t + n s t sinπf c t u izraz za autokorelaciju dobija se: R N τ = n c tn c t + τ cos πf c t cos πf c t + τ +n c tn s t + τ cos πf c t sin πf c t + τ +n s tn c t + τ sin πf c t cos πf c t + τ +n s tn s t + τ sin πf c t sin πf c t + τ = n c tn c t + τ cos πf cτ + n s tn s t + τ cos πf cτ n st U c + m 0 mt

Pri izvodenju je iskoršćen uslov da su kosinusna i sinusna komponenta uskopojasnog šuma nekorelisane n c tn s t + τ = n s tn c t + τ = 0, kao i da je cos πf c t cos πf c t + τ = sin πf c t sin πf c t + τ = cos πf cτ Po uslovu zadatka važi da je n c t = n s t i pošto važi sledi: R N 0 = n ct + n st R N 0 = n c t = n s t Tako da se od izraza za srednju snagu šuma dolazi na osnovu izraza za srednju snagu uskpojasnog šuma koja je u ovom slučaju: fc+fm n c t = R N 0 = f c f m f + a df = arctan f c + f m arctan f c f m a a a Odnosno korišćenjem odgovarajuće trigonometrijske jednačine Tražen odnosn signal šum je: n c t = a arctan af m a + fc fm SNR = P s n c t = arctan a U c m 0P m af m a +f c f m

Digitalne telekomunikacije / Digital communications Zadatak: Posmatra se prenos ASK signala oblika s m t = st cosπf 0 t, gde je st = T U k a k ht kt binarni moduli²u i signal sa periodi nom informacionom sekvencom...,, 0,, 0,,...} i elementarnim impulsom ht iji je spektar oblika: Hf = cos πft, f T 0, ina e. U estanost nosioca je f 0 = /T. Odrediti i skicirati signal u vremenskom domenu u ta ki F na izlazu prijemnika u slu aju nekoherentnog a, odnosno koherentnog b prijema. Odrediti marginu ²uma u oba slu aja ako je prag odlu ivanja u odlu iva u U. Objasniti koji od ova dva prijemnika obezbežuje manju verovatno u gre²ke. Problem: Consider an ASK signal of the form s m t = st cosπf 0 t, where st = T U k a k ht kt is a binary modulating signal with periodic information sequence...,, 0,, 0,,...} and a pulse ht whose spectrum is given by: Hf = cos πft, f T 0, elsewhere. Carrier frequency is f 0 = /T. Determine and depict the signal in the time domain at the point F at the receiver's output in case of noncoherent a and coherent b detection. Determine the noise margin the largest absolute value of the amplitude of the noise that does not cause an error in both cases if the decision threshold is set to U. Explain which of the two receivers ensures smaller error probability.

Re²enje: obliku Uzimaju i u obzir oblik informacione sekvence, moduli²u i signal se moºe predstaviti u st = T U ht kt, k odakle se izra unava njegov spektar kao Sf = T UHf T δ k f k = UHf T k δ f k. T Vidi se da je tj. s m t = st = U + U cos πt, T U + U πt cos cosπf 0 t. T U slu aju nekoherentnog prijema a signal u ta ki F bi e: s F t = U + πt cos T pa je njegova margina ²uma U 0.59U. U slu aju konerentne detekcije imamo s F t = U a margina ²uma je u tom slu aju U.U. + πt cos, T Zbog ve e margine ²uma, manju verovatno u gre²ke obezbežuje koherentna detekcija.

Statisti ka teorija telekomunikacija / Statistical theory of communications Zadatak: Kroz kanal sa slabljenjem U i ka²njenjem V poslat je impuls, 0 t < T pt = 0, ina e, tako da je signal na prijemu oblika Xt = Upt V. Ako su U i V nezavisne slu ajne promenljive sa uniformnom, odnosno eksponencijalnom raspodelom: ϕ U u = /, 0 u 0, ina e, ϕ V v = λe λv, v 0 0, ina e, odrediti kumulativnu funkciju raspodele verovatno e amplitude primljenog signala Xt. Ako prijemnik moºe da detektuje samo signal amplitude ve e od δ, pri emu je 0 < δ <, izra unati verovatno u detekcije poslatog impulsa u trenutku t: P[Xt > δ]. Odrediti optimalan trenutak detekcije t u kome je ova verovatno a maksimizovana. Problem: Electrical signal pt =, 0 t < T 0, elsewhere is sent through the channel with attenuation U and delay V, so that the received signal is of the form Xt = Upt V. If U and V are independent random variables with uniform and exponential distribution, respectively: ϕ U u = /, 0 u 0, elsewhere, ϕ V v = λe λv, v 0 0, elsewhere, nd the cumulative distribution function of the received signal's amplitude Xt. If the receiver is able to detect only voltages greater than δ, where 0 < δ <, calculate the probability of detection of the sent impulse at time t: P[Xt > δ]. Determine the optimal moment of detection t at which this probability is maximized.

Re²enje: Potrebno je odrediti F Xt x = P[Xt x]. Kako je o igledno 0 Xt za svako t, dobija se F Xt x = 0 za x < 0 i F Xt t = za x. Neka je nadalje 0 x <. U tom slu aju dogažaj Xt x se moºe izraziti na slede i na in Xt x } = pt V = 0 } pt V =, U x } = t < V } t > V + T } V < t < V + T, U x } pa je F Xt x = P[V > t] + P[V < t T ] + P[t T < V < t] P[U x]. Treba razmotriti dva slu aja, t < T i t T. U prvom slu aju se dobija a u drugom tako da je kona no F Xt x = e λt + e λt x, F Xt x = e λt + e λt T + e λt T e λt x, 0, x < 0 e λt + e λt x, 0 x <, t < T F Xt x = e λt + e λt T + e λt T e λt x, 0 x <, t T, x. Verovatno a detekcije impulsa u trenutku t sada se lako odrežuje kao P[Xt > δ] = F Xt δ, tj. e λt δ P[Xt > δ] =, t < T e λt e λt δ, t T. Vidi se da ova verovatno a, posmatrana kao funkcija vremena, raste u intervalu 0 t T, nakon ega monotono opada. Optimalan trenutak detekcije u kome je ona maksimizovana je stoga t = T.

Teorija informacija / Information theory Zadatak: crne i bele kuglice, koje se razlikuju jedino po boji, nalaze se u posude, tako da su u svakoj posudi po kuglice ne obavezno iste boje. U jednom potezu se iz prve posude na slu aj izvla i jedna kuglica i prebacuje u drugu, a posle toga se iz druge posude na slu aj izvla i jedna kuglica i prebacuje u prvu. Ako se ovaj postupak ponavlja mnogo puta, odrediti prose nu koli inu informacije koju sadrºi podatak o tome koje kuglice se nalaze u prvoj posudi nakon jednog poteza. Problem: black and white balls, which dier only in colour, are put in bowls, so that there are balls in each bowl not necessarily of the same colour. In one move, one ball from the rst bowl is chosen at random and put into the second bowl, and then one ball chosen at random from the second ball is put into the rst bowl. If this is repeated many times, calculate the average amount of information conveyed by the contents of the rst bowl after a single move.

Re²enje: Neka su b i b brojevi belih kuglica u prvoj posudi pre i posle jednog poteza. Ako su sa C i B ozna eni dogažaji da je izvu ena crna ili bela kuglica, sa I i II prvo i drugo izvla enje u jednom potezu, a sa p I i p II njihove verovatno e, onda su mogu i slede i potezi sa odgovaraju im verovatno ama: b I II p I p II p b 0 C C 0 C B B C B B C C C B B C B B C C C B B C B B 0 0 Pri odreživanju verovatno a, uzeto je u obzir koliko kojih kuglica ima u posudi iz koje se neka od njih izvla i, kao i da su izvla enja u jednom potezu nezavisna osim preko brojeva kuglica. Proces dobijen uzastopnim izvla enjima je Markovljev izvor, ije stanje je npr. broj belih kuglica u prvoj posudi. Na osnovu prethodne tabele, uzimaju i u obzir da su razli iti potezi za isto polazno stanje disjunktni dogažaji, sabiranjem verovatno a onih koji dovode u isto odredi²no stanje dobija se matrica verovatno a prelaza izvora, 0 0 Π = 7 0 0 0 0 7 Re²enje problema je entropija ovog izvora. Da bi se ona izra unala, potrebno je odrediti vektor njegovih stacionarnih verovatno a koji je re²enje sistema jedna ina t = [ t 0 t t t ], tπ = t, t 0 + t + t + t =. Iz simetrije izvora moºe da se zaklju i da je t 0 = t i t = t, na osnovu ega se lako dobija.. t 0 = t = 0, t = t = 9 0.

Entropije prelaza iz pojedinih stanja su H 0 = H = ld + ld = ld i H = H = ld + 7 odakle sledi da je entropija izvora ld 7 + ld = + ld 7 ld 7, H = t 0 H 0 + t H + t H + t H = 7 5 + ld ld 7.7. 0 0