Nucleosynthesis in Supernovae and GRBs and Neutrino Oscillation

Similar documents
Supernova Ncleosynthesis and Neutrino Oscillation

Element Genesis and Cosmic Chemical Evolution R-Process Prespecive

Cosmological & Supernova n s and Nucleosynthesis

Strong Magnetic Field (SMaF) in Nuclear Astrophysics

College of Bioresource Sciences, Nihon University, Fujisawa , Japan

Neutrinos and explosive nucleosynthesis

Solar and atmospheric ν s

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

Crossover between Nuclear Physics & Astrophysics

Interna'onal Nuclear Physics Conference Collec've neutrino flavor oscilla'ons and applica'on to supernova nucleosynthesis

Asymmetric Neutrino Emissions and Magnetic Structures of Magnetars in Relativistic Quantum Approach

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Nuclear physics input for the r-process

The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions. Tokyo Metropolitan University.

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

arxiv: v1 [astro-ph.he] 28 Dec 2010

Neutrinos and Supernovae

Supernova neutrinos and their implications for supernova physics

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Recent results from Super-Kamiokande

Neutrino Physics: Lecture 1

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

Nobuya Nishimura Keele University, UK

Neutrinos from Black Hole Accretion Disks

Neutrinos and Astrophysics

Neutrinos and the Universe

Chart of Elementary Particles

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Progress of supernova simulations with the Shen equation of state

Nucleosynthesis in Supernovae and the Big-Bang I

Neutrino Physics: Lecture 12

Nucleosynthesis in Supernovae and the Big-Bang II

Ultra-stripped Type Ic supernovae generating double neutron stars

Neutrinos Lecture Introduction

Nuclear robustness of the r process in neutron-star mergers

Particle Physics: Neutrinos part II

Neutrinos in supernova evolution and nucleosynthesis

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Neutrinos and Big-Bang Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis

Updated three-neutrino oscillation parameters from global fits

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

( Some of the ) Lateset results from Super-Kamiokande

Recent Discoveries in Neutrino Physics

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino-nucleus reaction cross sections and e-capture rates based on recent advances in shell-model interactions

Neutrinos in Astrophysics and Cosmology

Low Energy Neutrinos from Black Hole - Accretion Disks

Primordial (Big Bang) Nucleosynthesis

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

The Hyper-Kamiokande project

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

Andrey Formozov The University of Milan INFN Milan

Neutrino Oscillations

Neutrino Oscillations and the Matter Effect

Neutrino Oscillation Effects on Supernova Light Element Synthesis

Neutrino Physics: an Introduction

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Astrophysical Neutrino at HK

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Results from T2K. Alex Finch Lancaster University ND280 T2K

1. Neutrino Oscillations

QRPA calculations of stellar weak-interaction rates

Neutrinos From The Sky and Through the Earth

1 Stellar Abundances: The r-process and Supernovae

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul

BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Internal conversion electrons and SN light curves

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

- Future Prospects in Oscillation Physics -

Overview of Reactor Neutrino

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrino Oscillations

Spectrum of the Supernova Relic Neutrino Background

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements


Recent results from Super-Kamiokande

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process )

Nuclear Astrophysics - I

長寿命アイソマーと核構造 超新星ニュートリノ過程

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments

Neutrino Oscillations

Phenomenology of neutrino mixing in vacuum and matter

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Neutrino Masses and Mixing

Status and prospects of neutrino oscillations

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

Prospects of Reactor ν Oscillation Experiments

Transcription:

Meeting on Unification of Particle Physics, Nuclear Physics and Astrophysics, Ise-Shima, December 3-5, 2011 Nucleosynthesis in Supernovae and GRBs and Neutrino Oscillation Taka KAJINO National Astronomical Observatory (NAOJ) Department of Astronomy, University of Tokyo (UT) COSNAP-Collaboration NAOJ: W. Aoki, K. Nakamura, J. Hidaka, T. Kuroda, T. Yamazaki, Tokyo: T. Yoshida, W. Fujiya, S. Sato, K. Shaku, M. Kusakabe, T. Otsuka, K. Nomoto, H. Umeda, S. Kawagoe, N. Yasutake JAEA: T. Hayakawa, S. Chiba, N. Iwamoto, Nihon: T. Suzuki, T. Maruyama, Nagoya: H. Yokomakura, K. Kimura, A. Takamura, Visi. Profs.: K. Cheoun (Soongsil), Y. Pehlivan (Turky), G. Mathews (Notre Dame), A. Balantekin (Wisconsin), M. Famiano (W.Michigan)

ニュートリノの質量 Neutrino Masses 1 他の素粒子の質量 ~ 10,000,000,000 Quark & Lepton Masses Quark & Lepton Masses E = mc 2 Why 10-10? 10-10 This could be a signature of new physics at 10 10 times higher energy scale than the ordinary scale. ν i + ν i e + + e - 2γ (Τ) Key Physics suggested by FINITE mass neutrinos: ν µ? ν Masses Generation ν τ Unification of elementary forces beyond the standard model? CP violation and Lepto- & Baryo-genesis? Why left-handed neutrinos, Majorana or Dirac? Explosion Mechanism of cc-sne & Neutron Stars?

KNOWN Neutrino Oscillations m 232 and θ 23 SK (atmospheric ν) m 12 2 and θ 12 KAMIOKANDE, SK, KamLand (reactor ν), SNO 23-mixing sin 2 2θ 23 = 1.0 Δm 2 23 = 2.4 10-3 ev 2 12-mixing Cabibbo angle sin 2 2θ 12 = 0.816 (θ 12 +θ C =π/2) Δm 2 12 = 7.9 10-5 ev 2 UNKNOWN 13-mixing sin 2 2θ 13 (< 0.1) T2K, June 14, 2011 m 13 2 = ±2.4x10-3 ev 2 δ=cp-phase Absolute Mass E(νµ)=E(ντ): Kobayashi-Masukawa, PTP (1973) Yokomakura et al., PL B (1986)

1.9K Various Neutrino-Sources in Nature CMB Cosmic Background Neutrino Cosmology verification of particle model ν e, ν µ, ν τ ν e, ν µ, ν τ PURPOSE Study SUPERNOVA-ν and CMB-Anisotropies: 1. to constrain the ν oscillation parameters θ 13 and m 132. 2. to constrain the ν total mass.

Various roles of ν s in SN-nucleosynthesis νp-process: 92 Mo, 96 Ru? MSW high-density resonance through θ 13 at ρ ~ 10 3 g/cm 3 ν e ν µτ NS Si Layer R-process: Heavy Nuclei Explo. Si-burn. Fe-Co-Ni, 60 Co, 55 Mn, 51 V ν-process 180 Ta, 138 La, 92 Nb, 98 Tc ν-process: 6,7 Li, 9 Be, 10,11 B

Neutrino-driven relativistic jet (Harikae + 09, 10 Special relativistic MHD code (Takiwaki et al 2009) Neutrino heating is calculated by ray-tracing in flat timespace. Realistic EOS of Shen et al (1998) is implemented. Initial data is taken from 35OC model (Woosley&Heger 2006)

Supernova Nucleosynthesis Simulation T. Kajino & S. Chiba ν-pair Heated Collapsar Model K. Nakamura, et al. ApJ (2011). 235 U Proton Number Z 56 Fe 82 208 Pb 126 184 20 28 50 Neutron Number N

R-process in Pair ν-heated Collapsar Model for GRB K. Nakamura, S. Sato, S. Harikae, T. Kajino and G.J. Mathews (2011), submitted to ApJ. Neutron-rich condition for successful r-process: 0.1 < Y e < 0.5 Sr-Y-Zr T νe = 3.2 MeV < T νe = 4 MeV t ν >> t dyn I-Xe Ir-Pt Collapsar model Dy-Er Pb 107,109 Ag Observed Solar r-abundance 197 Au

Tantalum( 180,181 Ta) 138 La 181 Ta g (stable), 180 Ta g (unstable, τ 1/2 = 8h), 180 Ta m (isomer, τ 1/2 > 10 15 y) 180 Ta is the rarest isotope in the Solar-Systerm and even in the Universe! p process Where was 180 Ta synthesized? Burbidge 2 Fowler-Hoyle, RMP 29 (1957), 547-650. Element Genesis Neutral current in Supernovae (1990) r process M. Burbidge J. Burbidge W. Fowler F. Hoyle

180 Ta-genesis needs Quantum Phys. + SN Hydro-dyn. Solar- 180 Ta is all ISOMER with T 1/2 > 10 15 y! - Long lived 180 Ta m is excited in hot SN-photon bath. - Intermediate states are depopulated to the ground state, which decays in 8 hours. Excitatoin Energy We solved dynamical explosive SN-nucleosynthesis coupled with quantum transitions simultaneously. (Hayakawa, et al. 2010, PR C81, 052801 ; PR C82, 058801) Photons Plan Distribution Planckian Distribution Photon Flux K=1 K = 1 Intermediate states 1 + 180 Ta0 180 Ta g Intermediate States Ground St. T 1/2 =8.15 h K=9 K = 9 Isomer 9-75.3 Intermediate states T 1/2 15 1/2 > 10 15 y Isomer 180 Ta m : solar abundance

7 7 6 6 5 5 4 4 3 3 2 2 1 1 Result from ν-nucleosynthesis 138La 138La 180Ta 180Ta 180Ta isomer 180Ta Heger et al. PLB606, 258 (2005) (Overproduction) (New result) T. Hayakawa, T. Kajino, S. Chiba, and G.J. Mathews, Phys. Rev. C81 (2010), 052801 About 40% 180 Ta m survives in supernova explosion. Then, both 138 La and 180 Ta abundances can be consistently reproduced by the CC-int. of ν e and ν e of T νe = 3.2 MeV, T νe = 4 MeV. 0 0 solar system gamma only nc 6MeV cc 4MeV cc 6MeV cc 8MeV Consistent with the r-process!

Oscillation Supernova (MSW) ν-process Effect to on estimate Supernova Tν µ, ν-process and Tν τ SN II: Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101. SNIc + II: Nakamura, Yoshida, Shigeyama, Kajino, ApJL 718 (2010), L137. Abundance X A 0.25 0.2 0.15 0.1 GCE of 11 B & 11 B/ 10 B ν ν-temperatures are known! ν ν e T(ν e ) < T(ν e ) < T(ν x ) 3.2 4.0 6.0 MeV ν e Tν µ, = Tν τ = 6 MeV ~85% ~15% 0.05 0 MSW 0 high-density 10 20 30 resonance 40 50 60 ε ν (MeV) ν µ,τ,ν µ,τ Suzuki, Chiba, Yoshida, Kajino & Otsuka, PRC74 (2006), 034307 ν x ν e

Our Theoretical Prediction 7 Li/ 11 B-Ratio Yoshida, Kajino et al. 2005, PRL94, 231101; 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448. 7 Li/ 11 B Normal Mass Hierarchy Astrophysics: Mass Hierarchy m 13 2 13-Mixing Angle θ 13 No Mixing Inverted 10-6 10-5 10-4 10-3 10-2 10-1 Long Baseline Exp: T2K (Kamioka) June 14, 2011 MINOS July 29, 2011 RENO (KOREA) Double CHOOZ Daya Bay sin 2 2θ 13

What is What the is lower the lower limit to limit sinto 2 2θ 13? sin 2 (θ 13 )? T2K

Compasrison between MINOS and T2K M (Normal) (Inverted) Mass hierarchy is still unknown!

Our Theoretical Prediction 7 Li/ 11 B-Ratio Yoshida, Kajino et al. 2005, PRL94, 231101; 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448. 7 Li/ 11 B Normal Mass Hierarchy Astrophysics: Mass Hierarchy m 13 2 13-Mixing Angle θ 13 Excluded by T2K and MINOS No Mixing Inverted Long Baseline Exp: T2K (Kamioka) June 14, 2011 MINOS July 29, 2011 10-6 10-5 10-4 10-3 10-2 10-1 ALLOWED! sin 2 2θ 13

Murchison SiC X-grains SiC X grains exhibit - 12 C/ 13 C > Solar - 14 N/ 15 N < Solar - Enhanced 28 Si - Decay of 26 Al (t 1/2 = 7x10 5 yr) & 44 Ti (t 1/2 = 60 yr) Origin in Core Collapse Supernovae

Mass Hierarchy, Normal or Inverted? Mathews, Kajino, Aoki and Fujiya, arxiv:1108.0725 (2011). Predicted 7 Li/ 11 B-Ratio Normal Mass Hierarchy Excluded by T2K and MINOS Inverted First Detection of 7 Li/ 11 B W. Fujiya, P. Hoppe, and U. Ott, ApJ 730, L7 (2011). 11 B and 7 Li were measured in SiC presolar X-grains which are known to be made of Supernova dusts. Excluded by SiC X-Grains Inverted mass hierarchy is more preferred!

ν-asymmetry under the Strong Dipole (Poroidal) Magnetic Field Fundamental Interactions among Hadrons (p, n, Λ, Σ ) and Lepton (e,ν ) at High-ρ and High-T in Relativistic Field Theory and QCD Asymmetric Proto-neutron ν-scattering stars in and c.c. absorption. Supernovae Maruyama, Kajino, Yasutake, Cheoun, & Ryu, PRD83 (2011), 081302 (R). Λ Neutrino scattering and absorption process inside the magnetized Neutron star (10 15 G) is asymmetric. ~ 2 % asymmetric ν-abs. (drift) Enough for Pulsar-Kick ~500km/s! By D.Page

Magnetic Field and ν-interactions Poroidal Pulsar Kick Toroidal Twist Mode Spin down & growth of intsability T. Kuroda, with Yasutake, Maruyama, Hidaka & Kajino Initially dipole Double Toroidals Initially no dipole Single Toroidal

Why Amino Acids on the Earth, All Left-Handed? Chitrality, earth origin or universal? Neutrinos are all left-handed! Supernovae with strongly magnetized neutron star or BH emit intensive flux of neutrinos over 10 10 yrs! SN ejecta including 14 N interact with neutrino under strong magnetic field! Neutrino- 14 N coupling is asymmetric & chiral selective! Boyd, Kajino, & Onaka suggested that the L-handed chirality of amino acids is UNIVERSAL! (Astrobio. 10 (2010), 561-568; Int. J. Mol. Sci. 12 (2011), 3432) Magnetized Supernovae 14 N lives! 3.95 2.31 0.06% 99.3% 0.61% 5.14 2m e c 2 14 O ν e + 14 N e - + 14 O 14 N dies! Mann and Primakoff (Origins of Life, 11 (1981), 255) suggested β-decay of 14C, but it s too SLOW! ν e + 14 N e + + 14 C 0.16 100% 0.00 14 C (5730y) 14 N (1+)

CONCLUSION We propose a new astrophysical method to determine the unknown ν-oscillation parameters, θ 13 and mass hierarchy m 132, simultaneously in terms of the supernova ν-process nucleosynthesis of 180 Ta, 138 La, 7 Li and 11 B By taking account of the MSW effects. Combining the recent detection of 7 Li/ 11 B isotopic ratio in presolar X-grains and the T2K + MINOS results of long-baseline neutrino oscillation experiments on θ 13, we can conclude that the inverted mass hierarchy is more preferred. Collaboration highly desirable in Theory plus Exp/Obs. as required/demoinstrated in SN-neutrino project! Nucleosynthesis c.c. SNe ν Magnetic Field Life