Control of Proton Electrolyte Membrane Fuel Cell Systems. Dr. M. Grujicic Department of Mechanical Engineering

Similar documents
Fuel Cell System Model: Auxiliary Components

Appendix A Electric Vehicle PEM Fuel Cell Stack Parameters

Fuel cell systems offer clean and efficient energy production and

MODELING, SYSTEM ANALYSIS AND CONTROL OF A PROTON EXCHANGE MEMBRANE FUEL CELL

Model Reference Gain Scheduling Control of a PEM Fuel Cell using Takagi-Sugeno Modelling

Direct Energy Conversion: Fuel Cells

Algebraic Observer Design for PEM Fuel Cell System

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell

The Impact of Hydration Dynamics on the Control of a PEM Fuel Cell

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

ELECTROCHEMICAL COMPRESSION OF PRODUCT HYDROGEN FROM PEM ELECTROLYZER STACK

Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells

Exercise 8 - Turbocompressors

Multidimensional, Non-Isothermal, Dynamic Modelling Of Planar Solid Oxide Fuel Cells

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

Modelling fuel cells in start-up and reactant starvation conditions

SUPPLEMENTARY INFORMATION

MODELING, PARAMETER IDENTIFICATION, AND VALIDATION OF REACTANT AND WATER DYNAMICS FOR A FUEL CELL STACK. D. A. McKay, W. T. Ott, A. G.

Review of temperature distribution in cathode of PEMFC

EFFECT OF HUMIDITY ON PEM FUEL CELL PERFORMANCE PART II - NUMERICAL SIMULATION

Performance Analysis of a Two phase Non-isothermal PEM Fuel Cell

Chapter 5. Mass and Energy Analysis of Control Volumes

Basic overall reaction for hydrogen powering

Introduction to Mass Transfer

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Pre-Lab Questions/Answers Experiment 6

Performance Investigation on Electrochemical Compressor with Ammonia

SC/BIOL Current Topics in Biophysics TERM TEST ONE

Advanced Analytical Chemistry Lecture 12. Chem 4631

Numerical simulation of proton exchange membrane fuel cell

Basic overall reaction for hydrogen powering

Constraint Management in Fuel Cells: A Fast Reference Governor Approach

Oxygen Transfer Model in Cathode GDL of PEM Fuel Cell for Estimation of Cathode Overpotential

Mole Concept 5.319% = = g sample =

Prof. Mario L. Ferrari

Batteries (Electrochemical Power Sources)

Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed

Proceedings of FUELCELL2006 The 4th International Conference on FUEL CELL SCIENCE, ENGINEERING and TECHNOLOGY June 19-21, 2006, Irvine, CA

Experimental model for a DMC-based control applied to a PEM Fuel Cell

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Current Management in a Hybrid Fuel Cell Power System: A Model Predictive Control Approach

Dynamics and Control of Membrane Hydration in a PEMFC

sensors ISSN by MDPI

Part I.

Computational model of a PEM fuel cell with serpentine gas flow channels

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

Problem 1 (From the reservoir to the grid)

SCIENCES & TECHNOLOGY


We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Non-linear Predictive Control with Multi Design Variables for PEM-FC

Model-based Analysis for the Thermal Management of Open-Cathode Proton Exchange Membrane Fuel Cell Systems concerning Efficiency and Stability

A mathematical model for an isothermal direct ethanol fuel cell

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1EXAMINATION 2017/2018

Conservation of Angular Momentum

Design, Optimization and Statistical Sensitivity Analysis of the Polymer Electrolyte Membrane Fuel Cells. Dr. M. Grujicic

Discrete Optimal Control & Analysis of a PEM Fuel Cell Vehicle to Grid (V2G) System

ENT 254: Applied Thermodynamics

DISCLAIMER. Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

1 st Law Analysis of Control Volume (open system) Chapter 6

Chapter Four fluid flow mass, energy, Bernoulli and momentum

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

Introduction to Turbomachinery

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt

Fuel Cell Activities in MME Waterloo

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Greenhouse Steady State Energy Balance Model

Sliding Mode Control for Stabilizing of Boost Converter in a Solid Oxide Fuel Cell

A PEM Fuel Cells Control Approach Based on Differential Flatness Theory

Large-scale simulation of polymer electrolyte fuel cells by parallel computing

Design of Multistage Turbine

Electrochemistry. Goal: Understand basic electrochemical reactions. Half Cell Reactions Nernst Equation Pourbaix Diagrams.

Power Control for a Polymer Electrolyte Membrane Fuel Cell

FUEL CELLS: INTRODUCTION

The First Law of Thermodynamics. By: Yidnekachew Messele

D DAVID PUBLISHING. 1. Introduction. Akira Nishimura 1, Masashi Baba 1, Kotaro Osada 1, Takenori Fukuoka 1, Masafumi Hirota 1 and Eric Hu 2

MODELING THE BEHAVIOR OF A POLYMER ELECTROLYTE MEMBRANE WITHIN A FUEL CELL USING COMSOL

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Thermal Energy Final Exam Fall 2002

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

20 m neon m propane. g 20. Problems with solutions:

MODEL BASED FAULT DIAGNOSIS IN PEM FUEL CELL SYSTEMS

Introduction to Controls

Research Article The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

Ceramic Processing Research

ECE 333 Renewable Energy Systems

The Pennsylvania State University. The Graduate School. College of Engineering A COMPUTATIONAL MODEL FOR ASSESSING IMPACT OF INTERFACIAL

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Journal of Power Sources

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

ME Thermodynamics I

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

Sustainable Power Generation Applied Heat and Power Technology. Equations, diagrams and tables

Transcription:

Control of Proton Electrolyte Membrane Fuel Cell Systems Dr. M. Grujicic 4 Department of Mechanical Engineering

OUTLINE. Feedforward Control, Fuel Cell System. Feedback Control, Fuel Cell System

W Cp Supply Manifold (SM) I st H Tank Compressor (Cp) Cooler and Humidifier W Ca,in Cathode (Ca) H O O Membrane W An,in H H O Anode (An) W Ca,out W RM,out Return Manifold (RM) W An,out A Schematic of the PEM Fuel Cell System Analyzed in the Present Work

General Parameters Used for Modeling the PEM Fuel Cell System Parameter Symbol SI Units Value Atmospheric Pressure p atm Pa.3 5 Atmospheric Temperature T atm K 98.5 Air Specific Heat Ratio γ -.4 Air Specific Heat C p J/kg/K 4 Air Density ρ a kg/m 3.3 Universal Gas Constant R J/mol/K 8.34 Air Gas Constant R a J/kg/K 86.9 Oxygen Gas Constant R O J/kg/K 59.8 Nitrogen Gas Constant R N J/kg/K 96.8 Vapor Gas Constant R v J/kg/K 46.5 Hydrogen Gas Constant R H J/kg/K 44.3 Molar Mass of Air M a kg/mol 8.97-3 Molar Mass of Oxygen M O kg/mol 3. -3 Molar Mass of Nitrogen M N kg/mol 8. -3 Molar Mass of Vapor M v kg/mol 8. -3 Molar Mass of Hydrogen M H kg/mol. -3 Faraday s Constant F A s/mol 96,487 Temperature of the Fuel Cell T fc K 353

Input Parameters Used for Modeling the PEM Fuel Cell System Parameter Symbol SI Units Value Motor Constant k t Nm/A.53 Motor Constant R CM ohm.8 Motor Constant k v V/(rad/s).53 Compressor Efficiency Compressor Motor Mechanical Efficiency η Cp -.8 η CM -.98 Number of Cells in Fuel Cell Stack n - 38 Fuel Cell Active Area A fc m 8-4 Supply Manifold Volume V SM m 3. Single Stack Cathode Volume V Ca m 3. Single Stack Anode Volume V An m 3.5 Return Manifold Volume V RM m 3.5 Supply Manifold Outlet Orifice Constant Cathode Outlet Orifice Constant Membrane Dry Density Membrane Dry Equivalent Weight k, kg/s/pa.369-5 SM out k, kg/s/pa.77-5 Ca out ρ m, dry kg/m 3 3 M, kg/mol. m dry Membrane Thickness t m m.75-4 Compressor Diameter d Cp m.86 Compressor and Motor Inertia J Cp kg m 5-5 Return Manifold Throttle Discharge Coefficient C D -.4 Return Manifold Throttle Area A T m. Average Ambient Air Relative Humidity Oxygen Mole Fraction at Cathode Inlet Hydrogen Mole Fraction at Anode Inlet φ atm -.5 x O, in -. x H, in -.

Governing Equations

Mass of Air in the Supply Manifold dm dt SM W Cp W SM, out Mass of Oxygen in the Cathode dm dt O W O W W, in O, out O, react Mass of Nitrogen in the Cathode dm dt N W W N, in N, out

Mass of Water in the Cathode dm w, Ca dt W v, Ca, in W v, Ca, out W v, Ca, gen W v, m Mass of Hydrogen in the Anode dm dt H W H W W, in H, out H, react Mass of Water in the Anode dm w, An dt W v, An, in W v, An, out W v, m

Rotational Speed of Compressor J Cp dω dt Cp ( τ τ ) CM Cp Supply Manifold Pressure dp dt SM R γ V a SM ( W T W T ) Cp Cp SM, out SM Return Manifold Pressure dp dt RM R a V T RM RM ( W W ) Ca, out RM, out

Auxiliary Equations

Supply Manifold Outlet Air Rate (Linearized Nozzle Equation) W SM, out k SM, out ( p p ) SM Ca Mass Flow Rate of Reacted Oxygen W O M, react O ni st 4F Mass Flow Rate of Reacted Hydrogen W H react M, H ni st F

Mass Flow Rate of Water Vapor Generated in the Cathode W v,, M Ca gen v ni st F Compressor Motor Torque (Static Motor Equation) τ CM η CM R k t CM ( v k ω ) CM v Cp

Steady-State Compressor Torque Compressor Air Temperature Cp atm SM Cp atm Cp P Cp W p p T C γ γ η ω τ γ γ η atm SM Cp atm atm Cp p p T T T

M. Grujicic, K. M. Chittajallu, E. H. Law and J. T. Pukrushpan, Transient Behavior of Polymer Electrolyte Membrane (PEM) Fuel Cell Systems, Submitted for Publication, June 3.

Fuel-Cell System Control Problem ( x, u w) x & f, State Equations x [ m m m p m m m p ] T O H N ω Cp SM SM w, An w, Ca RM States u v CM Controlled Variable w I st Disturbance z z z P λ net O P λ max net opt O h z ( x, u, w) Performance Variables y [ p, p ] T SM An Measurements

Linearized Model Application of Laplace Equation Yields w D u D x C z w B u B x A x zw zu z w u & W G U G Z w z u z Dynamic Feedback Controller W K U uw

Transfer Function Z ( s) () s ( G G K ) T z w zw z u W Ideal Controller Gain ideal K uw Gz ug zw uw

w z u z uw G G s s s K 3 α α α Dynamic Feedforward Controller Gain Finally, The Equation Becomes 8 8 8 3 7 4 6 5 4 6 7 8 8 8 3 7 4 6 5 4 6 3.793 7.89 4.3987 9.59 3.738 5.75 3.946.644 4.6365.7798 6.444 4.733 8.783 5.593 s s s s s s s s s s s s s K uw

Appendix Equations

Compressor Flow Rate

Mass Flow Rate of Air in the Compressor (Jensen and Kristensen Method) W Cp W cr θ Corrected Flow Rate W cr Φρ a π d 4 Cp U Cp

Ψ Ψ Φ Φ exp max max β Normalized Compressor Flow Rate where 3 3 4 4 max a M a M a M a M a Φ b M b M b β 3 3 4 4 5 5 max c M c M c M c M c M c Ψ

Dimensionless Head Parameter,,, Cp in Cp out Cp in Cp p U p p T C Ψ γ γ in Cp a Cp T R U M, γ Mach Number

Compressor Blade Tip Speed U Cp π 6 d Cp N cr Corrected Rotational Speed N cr N Cp θ Corrected Rotational Speed θ T Cp,in 88

Normalized Pressure p Cp, in p atm Regression Coefficients Regression Coefficient a i b i c i i.95-3.4449.4333 i -4.63685-5 -.34837 -.68344 Values i -5.3635-4.76567.8 i 3.7399-4 - -.4937 i 4-3.6996-5 -.58 i 5 - - -9.8755-3

Water Transport Through the Membrane

Flow Rate of Water Through the Membrane W v, m M v A fc n n d i F D w ( c c ) v, Ca t m v, An Electro-Osmotic Drag Coefficient nd.9.5 λm λm 3.4 9 Water Content 3.43 7.8ai 39.85ai 36.ai, < ai λi ( i 4.4( ai ), < ai 3 m, An, Ca)

Water-Vapor Activity a x p p ( i An Ca) v, i i v, i i, psat, i psat, i Average Water-Vapor Activity in Membrane a m a An a Ca Water Diffusion Coefficient D w D λ exp 46 33 T fc 4

Pre-Exponential Term in Above Equation D λ 6 6 6.5 ( ( λ ) ) ( 3.67( λ 3) ) 6 m m, λm <, λm 3,3 < λ < 4.5, λ m m 4.5 c Water Concentration ρm, dry λi M ( i An Ca) v, i, m, dry

Non-Linear Nozzle Flow Rate

Non-Linear Nozzle Flow Rate Equation Critical Pressure Drop ( ) ( ) ( ) > ) ( ) ( flow choked pr p p pr RT p A C flow normal pr p p pr pr pr RT p A C W crit u d u u T D crit u d u u T D γ γ γ γ γ γ γ γ γ γ γ γ crit u d crit p p pr

Fuel Cell Stack Voltage

Stack Voltage for n Fuel Cells v st nv fc Stack Voltage for Single Fuel Cell v fc E v act v ohm v conc E.9.85 3 Open Circuit Voltage 5 ( T T ) 4.385 T ln(.35 p ) ln(. p ) fc atm fc H 35 O

Activation Overpotential v.79 8.5 4.38 5 T 4 fc act a Where ( c i e ) v v v ( T T ) fc ln p Ca atm p sat.35 ( T ).73( p p ( T ) fc ln Ca.35 sat fc v a ( 5.68.68 ) O T p ( T ) p.73 p.73 ( 4 ) O ( ) ( 4.8.66 5.8.5736) T p T T fc fc sat fc sat fc fc c

Ohmic Overpotential v ohm R ohm Fuel-Cell Electrical Resistance i R ohm t m σ m Membrane Conductivity σ m ( b b ) λm exp b 33 T fc b 3 5.39 b b 35 3 3.6

Concentration Overpotential v conc i c i i max c 3 Where c 4 O ( 7.6 T.6) p ( T ) 3 O (.45 T.68) for p ( T ) 5 O ( 8.66 T.68) p ( T ) fc fc p.73 p.73 p.73 p.73 4 O (.6 T.54) for p ( T ) fc fc sat sat imax. c 3 fc fc sat sat fc fc < atm atm

Linearized System Matrices A -6.54 -.8897 83.8553 4.58-6.99 49.447-8.8-8.68-46.893 75.957 6.485-3.739 98.435.956.969.36835-39.9678.435 6.64 38. 4.78388-488.877-393.984 7.858-99.63699. 4.6989-5.349 B u.7569 B w -.359 -.395 -.95 -.58 D zu D zw.67856 -.4 C z.663.3688 -.896.44 -.6375 -.45555 3.897

55 5 45 8 A 6 A 4 A A Net Power, kw 4 35 3 A 8 A 6 A 4 A A 5 A.5.5 3 Oxygen Excess Ratio Variation of the Net Power With the Oxygen Excess Ratio at Different Stack-Current Levels Under Standard Operating Conditions: T fc 353 K and φ Ca

55 (a).6.55 (b) 5.5 Net Power, kw 45 4 35 3 5 max P net -.99-4 I st.7 I st.87 Oxygen Excess Ratio.45.4.35.3.5..5..5 λ -.7633-6 I opt O - 5.93-4 I st.733 st 5 5 StackCurrent, A 5 5 StackCurrent, A (a) Maximal Net Power; and (b) Optimal Oxygen Excess Ratio as a Function of Stack Current in a PEM Fuel Cell Under Standard Operating Conditions

Supply Manifold Pressure, Pa 35 35 3 75 5 5 75 5 5 5 Stack Current, A (c) opt p SM.996I st 736.4 I st 8.93 4 Compressor Motor Voltage, V 5 4 3 9 8 7 6 5 4 3 opt v CM -.36-3 I st.7 I st 4.3 5 5 StackCurrent, A (d) (c) Optimal Supply Manifold Pressure; and (d) Optimal Compressor Motor Voltage as a Function of Stack Current in a PEM Fuel Cell Under Standard Operating Conditions

(a) w I st Plant z P net P net opt λ O λ O max Static u opt v CM y p p SM An (b) w I st Plant z P net P net opt λ O λ O max Dynamic u v CM y p p SM An (a) Static and (b) Dynamic Open-Loop Feedforward Control of the PEM Fuel-Cell System

(a) 75 (b) 5 5 Static Stack Current, Amp 5 Compressor Motor Voltage, V 5 75 5 5 Dynamic 75 5 5 5 Time, s 5 5 5 5 Time, s (a) Step-Like Temporal Variation of the (Input) Stack Current, and the Corresponding: (b) Compressor Motor Voltage Optimal and Statically and Dynamically Feedforward Controlled Levels

3.5 3.5 Optimal Static (c) 6 Optimal Static (d) 3 Dynamic 5 Dynamic Oxygen Excess Ratio.75.5.5.75 Net Power, kw 4 3.5.5 5 5 5 Time, s 5 5 5 Time, s (c) Oxygen Excess Ratio; and (d) Net Power Optimal and Statically and Dynamically Feedforward Controlled Levels for the Step-Like Temporal Variation of the Stack Current

4 (a) Static (b) Static Supply Manifold/Atmospheric Pressure 3.5 3.5.5 5 5 5 Cell Voltage, V.9.8.7.6.5.4 5 5 5.5.5.5.75. Compressor Flow Rate, kg/s.3 5E-5. Current Density, A/m Temporal Responses of: (a) The Compressor and (b) The Fuel-Cell Corresponding to the Changes in the Stack Current Displayed in Figure 5(a) Under the Static Feedforward Control of the Compressor Motor Voltage. The Numbers Refer to the Time in Seconds

Supply Manifold/Atmospheric Pressure 4 3.5 3.5.5 krpm krpm 9 krpm 8 krpm 7 krpm 6 krpm 5 krpm 4 krpm 3 krpm krpm krpm.5.5.5.75. Compressor Flow Rate, kg/s Compressor Map for an Allied Signal Compressor [9]. Experimental Data are Denoted Using Triangles While the Non-Linear Curve Fitting [] Using Solid Lines

. % Humidity 5% Humidity 4. 5 Pa 3.5 5 Pa Cell Voltage, V.8.6.4 3. 5 Pa.5 5 Pa. 5 Pa.5 5 Pa.. 5 Pa 5E-5..5. Current Density, A/m Polarization Curves for a Single PEM Fuel Cell at 353K and at Different Pressures of the Fully- Humidified (Solid Lines) and 5% Relative Humidified (Dashed Lines) Air in the Cathode

M. Grujicic, K. M. Chittajallu and J. T. Pukrushpan, Control of the Transient Behavior of Polymer Electrolyte Membrane (PEM) Fuel Cell Systems, Submitted for Publication, July 3.

Fuel-Cell System Control Problem ( x, u w) x & f, State Equations x [ m m m p m m m p ] T O H N ω Cp SM SM w, An w, Ca RM States u v CM Controlled Variable w I st Disturbance z z z P λ net O P λ max net opt O h z ( x, u, w) Performance Variables [ W, p v ] T y, Cp SM st Measurements

Linearized Model Integral State Variable w D u D x C y w D u D x C z w B u B x A x yw yu y zw zu z w u & opt W Cp W Cp q &

Feedback Control of the Control Variable ( ) q K x x K u I d P Where o d d x x x dt u R u q Q q z Q z J T I T z T Cost Function dt u R u q Q q x Q C C x J T I T z z T z T Cost Function Can be Redefined as

Weighing Function Matrix Q [ ] T Q x Q I Where Q C x T z Q z C z K Optimal Gain [ ] T T K K R B P P I T T Where PA A P Q PBR B P K P This Procedure Yields 3 3 [ 3.6 3. 47.45 7.853 4.7.64.5 68.57] K I.857

Modal Canonical Form x c T x Resulting Matrices in Canonical Coordinate System A c TAT [ ] B T c B w B u C c C T y

Partitioning of the Matrices A c A cu A cd B c B B cu cd C c [ C C ] cu cd

Reduced Order Observer Gain (Linear Quadratic Guassian Method) L u T SCcuWy Where S is the Solution of This Equation SA T cu A cu S V x SC T cu W y C cu S Positive Definite Weighting Matrices V x [ ] T.. αb B diag cu cu W y 6 diag [ ]

Observer Gain [ ] T L T L u The Resulting L is L 7.748 3.669 3.346 645. 33.486 76.97 9.78.835.594.55 83.78 447.48 6.8 48.83 9.455 5.8859 93.4 6.477 349..7 4.6 34.87 69.945 66.99

The Resulting Linearized Equations Voltage ( ) w D u D x C y w D u D x C z y y L w B u B x A x yw yu y zw zu z w u ˆ ˆ ˆ ˆ ˆ ˆ& ( ) q K x x K u I d P ˆ

Linearized System Matrices A -6.54 -.8897 83.855 4.58-6.99 49.447-8.8-8.68-46.893 75.96 6.485-3.74 98.433.956.969.3684-39.968.435 6.64 38. 4.7839-488.88-393.984 7.85-99.637. 4.6989-5.349 B u.7569 B w -.359 -.395.68436 -.95 -.6898 D zu D zw D yu D yw -.4 -.4 -.3468 C z.663.3688 -.896.44 -.6375 -.45555 3.897 C y 4.7839-5.977 3.974.6643 -.5747

Eigen Values, Eigen Vectors and Observability Eigenvalues ε -.8-9.9-46.55-4.454-4.94-3.53 -.9536 -.55 Eigenvectors x.9e-6 -.747 -.8597.7E-6.57.3 -.954 -.6 x -.98.4 -.33 -.4855.355 -.36 -.75 -.578 x3-9.e-7 -.74689 -.88-4.5E-7.6936 -.499.5873 -.454 x4 -.94E-6 -.388 -.3857-5.7E-6.9776 -.83 -.39835 -.33 x5.88e-7.485.657 9.E-7.98 -.49 -.3 -.8 x6-5.39e-7.6447.8538 8.73E-6.7 -.366 -.4 -.9378 x7 -.9567.876.36736.9889 -.389.44.9.33 x8 8.5E-8.9788 -.37 -.5E-6.466 -.389 -. -.546 Observability rank(εi-a; Cy) 8 8 8 8 8 8 8 8 cond(εi-a; Cy).43 48.6 8.7 54.38 3.6 898.35 374.8 86.

Compressor Motor Voltage, V 5 4 3 9 8 7 6 5 4 3 opt v CM -.36-3 I st.7 I st 4.3 5 5 StackCurrent, A (a) Compressor Flow Rate, kg/s.8.7.6.5.4 W - 4. -7 I Cp.3 5 5 StackCurrent, A st (b) 4.3-4 I st -.5 (a) Optimal Compressor Motor Voltage; and (b) Optimal Compressor Flow Rate as a Function of Stack Current in a PEM Fuel Cell Under Standard Operating Conditions

.6.55 (c) 55 (d).5 5 Oxygen Excess Ratio.45.4.35.3.5..5..5 opt λ O -.7633-6 I st - 5.93-4 I st.733 Net Power, kw 45 4 35 3 5 max P net -.99-4 I st.7 I st.87 5 5 StackCurrent, A 5 5 StackCurrent, A (c) Optimal Oxygen Excess Ratio; and (d) Maximal Net Power as a Function of Stack Current in a PEM Fuel Cell Under Standard Operating Conditions

I st w I st z P λo net P λ max net opt O ( I ) st ( I ) st v W opt CM opt CM ( I ) st ( I ) st - Feedforward Controller Fuel Cell Stack u v CM y W p v st Cp SM xˆ Observer Integral Feedback Controller Observer-Based Feedback Controller for a PEM Fuel-Cell System

Stack Current, Amp 5 5 (a) Compressor Motor Voltage, V 3 5 5 5 (b) Static Feedforward Feedback 5 5 5 Time, s 5 5 5 Time, s (a) Step-Like Temporal Variation of the (Input) Stack Current, and the Corresponding: (b) Compressor Motor Voltage for Static Feedforward and Observer-Based Feedback Controlled Levels

Change in Oxygen Excess Ratio.75.5.5 -.5 -.5 -.75 (c) Static Feedforward Feedback Net Power Change, kw 4 - -4-6 (d) Static Feedforward Feedback - 5 5 5 Time, s -8 5 5 5 Time, s (c) Change in Oxygen Excess Ratio; and (d) Change in Net Power for Static Feedforward and Observer-Based Feedback Controlled Levels for Step-Like Temporal Variation in Stack Current

Supply Manifold/Atmospheric Pressure 4 3.5 3.5.5 (a) krpm krpm 5 5.5.5.5.75. 3 4 5 6 krpm krpm krpm krpm Observer-based Feedback Compressor Flow Rate, kg/s 7 krpm 5 8 krpm 9 krpm krpm krpm Cell Voltage, V.9.8.7.6.5.4 (b) 5.3 5E-5. 5 Current Density, A/m Observer-based Feedback 5 kpa 5 kpa kpa 4 kpa 3 kpa 35 kpa 5 kpa Temporal Responses of: (a) The Compressor and (b) The Fuel-Cell Corresponding to the Changes in the Stack Current Displayed in Figure 4(a) Under The Observer- Based Feedback Control of the Compressor Motor Voltage. The Numbers Associated With Arrowed Lines Refer to the Time in Seconds

Sensitivity Magnitude - - -3 - - 3 Frequency, rad/s Frequency Dependence of the Input-Sensitivity Magnitude for the PEM Fuel-Cell System With an Observer-Based Feedback Controller