Latest results on the 3-loop heavy flavor Wilson coefficients in DIS

Similar documents
3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

TF 2 -Contributions to 3-Loop Deep-Inelastic Wilson Coefficients and the Asymptotic Representation of Charged Current DIS

Johannes Blümlein, DESY [in collaboration with I. Bierenbaum and S. Klein]

Two and Three Loop Heavy Flavor Corrections in DIS

Recent Results on Three Loop Corrections to Heavy Quark Contributions to DIS Structure Functions

Good Morning to Seattle! J. Blümlein Status of Unpolarized PDFs and αs(m 2 Z ) Seattle, WA, October 20th 2009 p.1

arxiv: v1 [hep-ph] 1 Feb 2016

QCD Precision Tests in Deeply Inelastic Scattering

) Heavy Quark Corrections to Charged Current Deep-Inelastic Scattering at large Virtualities

Johannes Blümlein Deutsches Elektronensynchrotron DESY, Platanenallee 6, D Zeuthen, Germany

Status and news of the ABM PDFs

arxiv: v1 [cs.sc] 9 Jul 2014

arxiv: v2 [hep-ph] 20 Sep 2016

NNLO PDFs in 3 flavor scheme and collider data

Computing of Charged Current DIS at three loops

The Three-Loop Splitting Functions in QCD: The Non-Singlet Case

Computer Algebra Algorithms for Special Functions in Particle Physics.

PoS(DIS 2010)139. On higher-order flavour-singlet splitting functions and coefficient functions at large x

Proposal: Inclusive and Semi-Inclusive Constraints on the Parton Distributions at the LHC and the Study of Hard Processes

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Research in QCD factorization

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Heavy quark production and large-x nuclear gluons at EIC

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

Status of parton distributions and impact on the Higgs

Summary of the Heavy Flavours Working Group

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

arxiv: v1 [hep-ph] 12 Sep 2016

QCD threshold corrections for gluino pair production at NNLL

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

Status of Deeply Inelastic Parton Distributions

From Tensor Integral to IBP

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Topics on QCD and Spin Physics

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Five-loop massive tadpoles

The Drell Levy Yan Relation: ep vs e + e Scattering to O(ff 2 s ) Johannes Blümlein DESY 1. The DLY Relation 2. Structure and Fragmentation Functions

DIS 98 STRUCTURE FUNCTIONS SUMMARY, PART II

arxiv:hep-ph/ v2 11 Jan 2007

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

Perturbative QCD. Chul Kim. Seoultech. Part I : Introduction to QCD Structure functions for DIS

Understanding Parton Showers

O(α 3 s T2 F N f) Contributions to the Heavy Flavor Wilson Coefficients of the Structure Function F 2 (x,q 2 ) at Q 2 m 2

arxiv:hep-ph/ v1 25 Sep 2002

2. HEAVY QUARK PRODUCTION

Feyman integrals and difference equations

Resummed small-x and first moment evolution of fragmentation functions in pqcd

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Threshold Corrections To DY and Higgs at N 3 LO QCD

Heavy Quarks in MRST/MSTW Global Fits

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Master integrals without subdivergences

QCD Factorization and PDFs from Lattice QCD Calculation

arxiv:hep-ph/ v1 29 Aug 2006

CTEQ6.6 pdf s etc. J. Huston Michigan State University

Heavy Quarks. ... lessons we've learned & future applications. Fred Olness SMU

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Parton Distribution Functions and Global Fitting

Estimation of uncertainties from missing higher orders in perturbative calculations. Emanuele A. Bagnaschi (DESY Hamburg)

Progress in CTEQ-TEA (Tung et al.) PDF Analysis

The rare decay H Zγ in perturbative QCD

Recent Progress on the Determination of Nuclear Parton Distribution Functions

Achim Geiser, DESY Hamburg. Inclusive Deep Inelastic Scattering Jets and Heavy Flavours in DIS Exclusive dipion electroproduction

Large-n f Contributions to the Four-Loop Splitting Functions in QCD

Particles and Deep Inelastic Scattering

Inclusive Deep-Inelastic Scattering at HERA

Investigation of Top quark spin correlations at hadron colliders

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

QCD and Rescattering in Nuclear Targets Lecture 2

arxiv: v1 [hep-ph] 3 Jul 2015

Heavy Quark Production at High Energies

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

The structure of the proton and the LHC

QCD at hadron colliders Lecture 3: Parton Distribution Functions

PoS(EPS-HEP 2013)455. HERAFitter - an open source QCD fit framework. Andrey Sapronov. on behalf of theherafitter team

Introduction to Perturbative QCD

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order

Results on the proton structure from HERA

arxiv: v1 [hep-th] 22 Dec 2017

Threshold Corrections To DY and Higgs at N 3 LO QCD

Next-to-leading order corrections to the valon model

arxiv: v1 [hep-ph] 8 Dec 2010

arxiv: v1 [hep-ph] 20 Jan 2010

Proton Structure from HERA and the impact for the LHC

Multiloop integrals in dimensional regularization made simple

Physique des Particules Avancées 2

QCD studies and Higgs searches at the LHC part two

arxiv:hep-ph/ v1 4 May 1995

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

AN INTRODUCTION TO QCD

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Deep inelastic scattering and the OPE in lattice QCD

The transition from pqcd to npqcd

Precision Physics at the LHC

Zhong-Bo Kang Los Alamos National Laboratory

Transcription:

1/34 Latest results on the 3-loop heavy flavor Wilson coefficients in DIS A. De Freitas 1, J. Ablinger, A. Behring 1, J. Blümlein 1, A. Hasselhuhn 1,,4, A. von Manteuffel 3, C. Raab 1, C. Schneider, M. Round 1,, F. Wißbrock 1 1 DESY, Zeuthen Johannes Kepler University, Linz 3 J. Gutenberg University, Mainz 4 KIT, Karlsruhe 15.06.015

/34 Introduction Unpolarized Deep Inelastic Scattering DIS): k q k Q := q, x := Q P.q L µν Bjorken x P W µν dσ dq dx WµνLµν W µνq, P, s) = 1 4π 1 g µν qµqν x q d 4 ξ expiqξ) P, s J em µ ξ), J em ν 0) P, s = ) F L x, Q ) + x Q ) qµpν + qνpµ P µp ν + Q x 4x gµν F x, Q ). Structure Functions: F,L contain light and heavy quark contributions.

3/34 Deep Inelastic Scattering DIS): σ cc red Q =.5 GeV 5 GeV 7 GeV m c m c ) GeV) 1.6 1.4 1. NNLO 1 GeV 18 GeV 3 GeV 1. 1.18 1.16 60 GeV 10 GeV 00 GeV 350 GeV x 650 GeV x HERA NNLO fitted NNLO A+B)/ NLO 000 GeV x 1.14 1.1 1.1 NLO 0.11 0.11 0.114 0.116 0.118 0.1 0.1 α s M Z ) NNLO: S. Alekhin, J. Blümlein, K. Daum, K. Lipka, Phys.Lett. B70 013) 17 11.355 m c m c ) = 1.4 ± 0.03exp) +0.03 0.0 scale) +0.00 0.07 thy), α s MZ ) = 0.113 ± 0.011 Yet approximate NNLO treatment Kawamura et al. 105.57.

4/34 α smz ) from NNLO DIS+) analyses from ABM13 α smz ) BBG 0.1134 +0.0019 0.001 valence analysis, NNLO GRS 0.11 valence analysis, NNLO ABKM 0.1135 ± 0.0014 HQ: FFNS N f = 3 JR 0.118 ± 0.0010 dynamical approach JR 0.1140 ± 0.0006 including NLO-jets MSTW 0.1171 ± 0.0014 MSTW 0.1155 0.1175 013) ABM11 J 0.1134 0.1149 ± 0.001 Tevatron jets NLO) incl. ABM13 0.1133 ± 0.0011 ABM13 0.113 ± 0.0011 without jets) CTEQ 0.1159..0.116 CTEQ 0.1140 without jets) NN1 0.1174 ± 0.0006 ± 0.0001 Gehrmann et al. 0.1131 + 0.008 0.00 e + e thrust Abbate et al. 0.1140 ± 0.0015 e + e thrust BBG 0.1141 +0.000 0.00 valence analysis, N 3 LO TH α s = α sn 3 LO) α snnlo) + HQ = +0.0009 ± 0.0006 HQ NNLO accuracy is needed to analyze the world data. = NNLO HQ corrections needed.

5/34 Goals Complete the NNLO heavy flavor Wilson coefficients for twist- in the dynamical safe region Q > 0GeV no higher twist) for F x, Q ) Measure m c and α s as precisely as possible Provide precise CC heavy flavor corrections Consequences for LHC: NNLO VFNS will be provided better constraint on sea quarks and the gluon precise mc and α s on input

6/34 Factorization of the Structure Functions At leading twist the structure functions factorize in terms of a Mellin convolution F,L) x, Q ) = ) C j,,l) x, Q µ, m µ f j x, µ ) }{{} j }{{} nonpert. perturbative into pert.) Wilson coefficients and nonpert.) parton distribution functions PDFs). denotes the Mellin convolution f x) gx) 1 0 dy 1 0 dz δx yz)f y)gz). The subsequent calculations are performed in Mellin space, where reduces to a multiplication, due to the Mellin transformation ˆf N) = 1 0 dx x N 1 f x).

7/34 Wilson coefficients: C j,,l) N, Q µ, m µ ) = C j,,l) N, Q µ ) ) + H j,,l) N, Q µ, m µ At Q m the heavy flavor part ) H j,,l) N, Q µ, m = ) C µ i,,l) N, Q m )A µ ij µ, N i Buza, Matiounine, Smith, van Neerven 1996 Nucl.Phys.B factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements OMEs) of local operators O i between partonic states j ) m A ij µ, N = j O i j. additional Feynman rules with local operator insertions for partonic matrix elements. The unpolarized light flavor Wilson coefficients are known up to NNLO Moch, Vermaseren, Vogt, 005 Nucl.Phys.B. For F x, Q ) : at Q 10m the asymptotic representation holds at the 1% level..

8/34 The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s + C 3),PS q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 011) 6

The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 011) 6 9/34

The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 011) 6; J. Ablinger et al., 014 10/34

The Wilson Coefficients at large Q L NS q,,l) NF + 1) = a s A ),NS qq,q NF + 1) δ + Ĉ),NS q,,l) NF ) + a 3 s A 3),NS qq,q NF + 1) δ + A),NS qq,q NF + 1)C,NS q,,l) NF + 1) + Ĉ3),NS q,,l) NF ) L PS q,,l) NF + 1) = a3 s A 3),PS qq,q NF + 1) δ + A) gq,q NF ) NF C g,,l) NF + 1) + NF ˆ C3),PS q,,l) NF ) L S g,,l) NF + 1) = a sa gg,q NF + 1)NF C g,,l) NF + 1) + a3 s A 3) qg,q NF + 1) δ H PS q,,l) NF + 1) = a s H S g,,l) NF + 1) = as +A ) gg,q NF + 1) NF C g,,l) NF + 1) + A) gg,q NF + 1) NF C g,,l) NF + 1) + A ),PS Qg NF + 1) NF C q,,l) NF + 1) + NF ˆ C3) g,,l) NF ), A ),PS Qq N F + 1) δ + C ),PS q,,l) NF + 1) + a 3 s 3),PS + C q,,l) NF + 1) + A) gq,q NF + 1) C g,,l) NF + 1) +A ),PS Qq N F + 1) C,NS q,,l) NF + 1), A Qg NF + 1) δ + C g,,l) NF + 1) + a s A 3),PS Qq N F + 1) δ A ) Qg NF + 1) δ + A Qg NF + 1) C,NS q,,l) NF + 1) + A gg,q NF + 1) C g,,l) NF + 1) ) + C g,,l) NF + 1) + a 3 s A 3) Qg NF + 1) δ + A) Qg NF + 1) C,NS q,,l) NF + 1) { + A ) gg,q NF + 1) C g,,l) NF + 1) + A Qg NF + 1) C ),NS q,,l) NF + 1) } ),PS + C q,,l) NF + 1) + A ) 3) gg,q NF + 1) C g,,l) NF + 1) + C g,,l) NF + 1) J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, Nucl. Phys. B 844 011) 6; J. Ablinger et al., 014 11/34

Variable Flavor Number Scheme f k n f + 1, µ ) + f k n f + 1, µ ) = A NS qq,q n f, µ ) m + à PS qq,q n f, µ ) m f Q+ Qn f + 1, µ ) = à PS Qq n f, µ ) m Gn f + 1, µ ) = A S gq,q Σn f + 1, µ ) = = k=1 n f, µ m ) f k n f, µ ) + f k n f, µ ) Σn f, µ ) + Σn f, µ ) + à S Qg à S qg,q Σn f, µ ) + A S gg,q n f +1 f k n f + 1, µ ) + f k n f + 1, µ ) A NS qq,q Σn f, µ ) + n f à S qg,q n f, µ m ) n f, µ m ) + n f à PS qq,q n f, µ ) m n f, µ m ) Gn f, µ ) n f, µ m ) Gn f, µ ). n f, µ m ) Gn f, µ ). + ÃPS Qq n f, µ ) m + ÃS Qg n f, µ ) Gn m f, µ ) The choice of matching scales is not free and varies with the process in case of precision observables. Blümlein, van Neerven hep-ph/9811351 = More complicated for masses J. Blümlein, Wißbrock, 013 1/34

13/34 Status of OME calculations Leading Order: Witten 1976, Babcock, Sivers 1978, Shifman, Vainshtein, Zakharov 1978, Leveille, Weiler 1979, Glück, Reya 1979, Glück, Hoffmann, Reya 198 Next-to-Leading Order: Laenen, van Neerven, Riemersma, Smith 1993 Q m : via IBP Buza, Matiounine, Smith, Migneron, van Neerven 1996 Compact results via p F q s Bierenbaum, Blümlein, Klein, 007 Oα s ε) for general N) Bierenbaum, Blümlein, Klein 008, 009 Next-to-Next-to-Leading Order: Q m Moments for F : N =...1014) Bierenbaum, Blümlein, Klein 009 Contributions to transversity: N = 1...13 Blümlein, Klein, Tödtli 009 Terms n f to F general N): Ablinger, Blümlein, Klein, Schneider, Wißbrock 011 At 3-loop order known A PS qq,q, A qg,q, A PS TR qq,q, ANS, qq,q, A gq,q and A PS Qq complete A gg : also complete This talk) A Qg : all terms of On f T F C A/F ) Two masses m 1 m

14/34. Calculation of the 3-loop operator matrix elements The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules: p, ν, b p, µ, a 1+ 1) N δ ab p) N gµν p) µpν + νpµ) p + p µ ν, N p, i p1, i µ, a p, j p, j gt a ji µ / γ± δ ij / γ± p) N 1, N 1 N j=0 p1)j p) N j, N p1, µ, a p, ν, b p3, λ, c ig 1+ 1)N f abc νgλµ λgµν) p1 + µp1,ν λ p1,λ ν) p1) N + λ p1p,µ ν + pp1,ν µ p1 pgµν p1 p µ ν N 3 j=0 p1)j p) N 3 j { { p1 p p3 p1 + µ ν λ µ } + } ) p1 p3 p p1, N µ λ ν µ p1, i p, j p3, µ, a p4, ν, b p1, i p, j p3, µ, a p4, ν, b p5, ρ, c g µ ν N 3 N / γ± j=0 l=j+1 p)j p1) N l t a t b )ji p1 + p4) l j 1 + t b t a )ji p1 + p3) l j 1, N 3 g 3 N 4 N 3 N µ ν ρ/ γ± j=0 l=j+1 m=l+1.p)j.p1) N m t a t b t c )ji.p4 +.p5 +.p1) l j 1.p5 +.p1) m l 1 +t a t c t b )ji.p4 +.p5 +.p1) l j 1.p4 +.p1) m l 1 +t b t a t c )ji.p3 +.p5 +.p1) l j 1.p5 +.p1) m l 1 +t b t c t a )ji.p3 +.p5 +.p1) l j 1.p3 +.p1) m l 1 +t c t a t b )ji.p3 +.p4 +.p1) l j 1.p4 +.p1) m l 1 +t c t b t a )ji.p3 +.p4 +.p1) l j 1.p3 +.p1) m l 1, γ+ = 1, γ = γ5. N 4 p1, µ, a p, ν, b p4, σ, d g 1+ 1)N f abe f cde Oµνλσp1, p, p3, p4) p3, λ, c +f ace f bde Oµλνσp1, p3, p, p4) + f ade f bce Oµσνλp1, p4, p, p3), { Oµνλσp1, p, p3, p4) = ν λ gµσ p3 + p4) N +p4,µ σ p4gµσ N 3 i=0 p3 + p4)i p4) N 3 i p1,σ µ p1gµσ N 3 i=0 p1)i p3 + p4) N 3 i + p1 p4gµσ + p1 p4 µ σ p4p1,σ µ p1p4,µ σ } N 4 i i=0 j=0 p1)n 4 i p3 + p4) i j p4) j } { p1 p µ ν { } p3 p4 λ σ { } + p1 p, p3 p4, N µ ν, λ σ )

3) PS Sample of diagrams for A Qq ) 15/34

16/34 The diagrams are generated using QGRAF Nogueira 1993 J. Comput. Phys. A 3),NS qq,q A 3) gq,q A 3),PS Qq A 3) gg,q A 3) Qg No. diagrams 110 86 13 64 133 A Form program was written in order to perform the γ-matrix algebra in the numerator of all diagrams, which are then expressed as a linear combination of scalar integrals. A 3),NS qq,q 746 scalar integrals. A 3) gq,q 159 scalar integrals. A 3),PS Qq 5470 scalar integrals. = Need to use integration by parts identities.

17/34 Integration by parts We use Reduze A. von Manteuffel, C. Studerus, 01 to express all scalar integrals required in the calculation in terms of a smaller) set of master integrals. Reduze is a C++ program based on Laporta s algorithm. It is somewhat difficult to adapt this algorithm to the case where we have operator insertions, due to the dependance on the arbitrary parameter N. For this reason we apply the following trick: k) N x N k) N 1 = 1 x k N=0 This can be then treated as an additional propagator, and Laporta s algorithm can be applied without further modification. If we denote the master integrals by M i, then the reduction algorithm will allow us to express any given integral I as I = i c i x)m i x)

18/34 In fact, any given diagram D will be written this way: D = i c ix)m i x) In general the coefficients c i x) will be rational functions of x, m,.p and the dimension D. We want to obtain each diagram DN) as a function of N. We proceed as follows: 1. Calculate the master integrals M i N) as functions of N.. Evaluate M i x) = N=0 x N M i N). 3. Insert the results in Dx) = i c ix)m i x). 4. Obtain DN) by extracting the Nth term in the Taylor expansion of Dx). Step 1 is done using a variety of techniques to be described shortly. Steps to 4 are done using the Mathematica packages HarmonicSums.m, SumProduction.m and EvaluateMultiSums.m by J. Ablinger and C. Schneider.

19/34 Number of master integrals: A 3),NS qq,q 35 master integrals. A 3) gq,q 41 master integrals. A 3),PS Qq 66 master integrals. A 3) gg,q 05 master integrals. A 3) Qg 334 master integrals. 4 integral families are required and implemented in Reduze.

0/34 Calculation of the master integrals For the calculation of the master integrals we use a wide variety of tools: Hypergeometric functions. Symbolic summation algorithms based on difference fields, implemented in the Mathematica program Sigma C. Schneider, 005. Mellin-Barnes representations. In the case of convergent massive 3-loop Feynman integrals, they can be performed in terms of Hyperlogarithms Generalization of a method by F. Brown, 008, to non-vanishing masses and local operators. Almkvist-Zeilberger algorithm. Differential difference) equations.

1/34 Differential difference) equations In general our N-dependent Feynman master integrals will have the following structure MN) = F N)m ) a+ 3 D p) N Differentiating the master integrals w.r.t. m or p doesn t give any new information, since we already know the functional dependence on these invariants. Differentiating w.r.t. N makes no sense. However, in the x representation of the integrals Mx) = x N F N)m ) a+ 3 D p) N, N=0 we can differentiate w.r.t. x, since as we saw before, this turns the operator insertions into artificial propagators.

/34 Differentiation will raise the powers of the artificial propagators and the resulting integrals can be re-expressed in terms of master integrals. d dx Mx) = i p i x) q i x) M ix) Integrals in a given sector will produce a system of coupled differential equations. Let s consider the following example, M 1 N) = M N) = d D k 1 d D k d D k 3 π) D π) D π) D d D k 1 π) D d D k π) D d D k 3 π) D N j=0 k 3) j k 3 k 1 ) N j, D 1 D D 3 D 4 D 5 N j=0 k 3) j k 3 k 1 ) N j D1 D, D 3 D 4 D 5 where D 1 = k 1 p), D = k p), D 3 = k 3 m, D 4 = k 3 k 1 ) m and D 5 = k 3 k ) m.

3/34 In the x representation, they become M 1 x) = M x) = d D k 1 d D k d D k 3 1 π) D π) D π) D, D 1 D D 3 D 4 D 5 D 6 D 7 d D k 1 d D k d D k 3 1 π) D π) D π) D D1 D, D 3 D 4 D 5 D 6 D 7 with D 6 = 1 x k 3 and D 7 = 1 x k 3 k 1 ). So, d dx M 1x) = 1 1 x d dx M x) = 1 1 x + ɛ 1 ) M 1 x) + x 1 ɛ + 3 ) x ɛ M x) + ɛ 4 + 3ɛ) 1 1 x 1 x 1 x x 1 x M x) + K 1 x) ) M 1 x) + K x) where K 1 x) and K x) are linear combinations of already solved) subsector master integrals.

4/34 K 1 x) and K x) can be turned into the N representation using the RISC Mathematica packages. Then using the fact that M 1 x) = M x) = x N F 1 N)m ) a+ 3 D p) N, N=0 x N F N)m ) a+ 3 D p) N, N=0 we get the following system of coupled difference equations: N + )F 1 N + 1) N + + ɛ)f 1 N) F N 1) = K 1 N), N + ɛ)f N + 1) N + 3 ) ɛ F 1 N) ɛ 4 + 3ɛ) F 1N + ) F 1 N + 1)) = K N), The system can be solved using the RISC Mathematica packages C. Schneider s talk).

5/34 The results are given in terms of standard harmonic sums: F 1 N) = 1 ɛ 3 8 S N) 4 4N S N) + 3 3 3N + 1) + 8 1) N N + ) 3N + 1) + 1 ɛ 1) N 4N 1)S1 N) 3N + 1) 4 5N ) + 1N + 9 43N + 1) 3N + 1) 3 + S N) 8 ) S 1 N) + 3N + 1)S N) 4 S 1 N)S N) + S 3 N) 3N + 1) 3 3N + 1) 3 3 + 16 S,1 N) + 4 5N ) + 10N + 4 S,1 N) 3 3 3N + 1) 3 + 1 9N ) 10N 7 S N) ɛ 3N + 1) + 1) N N 1)S 1 N) 3N + 1) N5N + 9)S 1 N) 3N + 1) 3 + 7N + 5)S N) 19N 3 + 61N ) + 68N + 30 3N + 1) + 3N + 1) 4 +ζ S N) 1 N S N) + N + 1) + 1) N N + ) N + 1) S N)S 1 3N + 1)S N) + N) 10 S 3 N) 3 3N + 1) 3 + 4 S,1 N) + 4 ) S,1 N) S 1 N) 1 ) S N N) + S 3 N) S 1 N) + S N) 4 S 1 N) 3 3 3 N + 1 3 + 43N + 1)S 1 N) + 4 ) 9N + 7) S N) + 9N 1)S 3 N) + S 4 N) S 3,1 N) 43N + )S,1 N) 3N + 1) 3 3N + 1) 3N + 1) 3 3N + 1) 4 S, N) 3N + 1)S,1 N) + 10 S 3,1 N) + 4 S,1,1 N) 4 S,1,1 N) + 19N3 + 63N + 69N + 4 3 3N + 1) 3 3 3 3N + 1) 4 S N)S 1 3 N) S,,1 N) 16 S 3,1,1 N) 14 S,1,1,1 N) + 4 S,1,1,1 N) + 8 S,,1 N) 9 3 3 3 3 + 14 S,1, N) + 3N + 1)S,1,1 N) + 5 S 4,1 N) + 3 3N + 1) 3

6/34 More complicated integrals produce generalized sums, such as the cyclotomic harmonic sums: S {a1,b 1,c 1},...{a l,b l,c l }s 1,..., s l, N) = N s1 k a 1 k 1 + b 1 ) S c1 {a,b,c },...{a l,b l,c l }s,..., s l, N) k 1=1 and sums involving inverse binomials, for example, or N i=1 ) N N N k=0 ) i ) i i i j=1 k 4 k ) S 1 k) k k 1 j j j )S 1 1,, 1; j)

7/34 Emergence of new nested sums : ) N i i ) i 1 i j ) S 1 j 1,, 1; j) i=1 j=1 j 1 = dx x N 1 x H w17, 1,0x) H w 0 x 1 8 + x 18, 1,0x) 1 + ζ dx x)n 1 x 0 x + 1 8 + x H 1x) H 13x) 1 +c 3 dx 8x)N 1 x 0 x + 1 1 x, 8 1 1 w 1 =, w 13 = x8 x) x) x8 x), 1 1 w 17 =, w 18 = x8 + x) + x) x8 + x). 100 associated independent nested sums. The associated iterated integrals request root-valued alphabets with about 30 new letters. J. Ablinger, J. Bümlein, J. Raab, C. Schneider 014.

8/34 Results By now we have computed 6 out of 7 OMEs at Oα 3 s ), namely, A 3),PS qq, A 3) qg Ablinger, Blümlein, Klein, Schneider, Wissbrock, arxiv:1008.3347 3),NS, TR A qq Ablinger, Behring, Blümlein, ADF, von Manteuffel, Schneider, et. al., arxiv:1406.4654 A 3) gq A 3),PS Qq A 3) gg Ablinger, Blümlein, ADF, von Manteuffel, Schneider, et. al., arxiv:140.0359 Ablinger, Behring, Blümlein, ADF, von Manteuffel, Schneider, arxiv:1409.1135 to be published soon and the corresponding Wilson coefficients: L PS q,, L S g,, L NS q,, and Hq, PS We have also partial results for A 3) Qg terms N F T F and Ladder diagrams). The logarithmic contributions to all OMEs and WCs were published recently Behring, Blümlein, ADF, Bierembaum, Klein, Wißbrock, arxiv:1403.6356

9/34 3-Loop OME: A PS Qq { a 3),PS N) = C Qq F T 64 N + N + ) 1 ) 64 N + N + ) 1 ) F N 1)N N + 1) S,, N + ) N 1)N N + 1) S 3,1, N + ) + N 3P 3 S,1 1, 1, N ) 3P 3 S 1 1,1,1, 1, 1, N ) 3P 4 S 1,1 1, 1, N ) + + N 1) N 3 N + 1) N + ) N 1) N 3 N + 1) N + ) N 1) 3 N 4 N + 1) N + ) + N 64 N + N + ) S1,,1, 1, 1, N ) + 64 N + N + ) S1,,1, 1, 1, N ) } + + N 1)N N + 1) N + ) N 1)N N + 1) N + ) +C F T F N F { 16 N + N + ) S1 N) 3 + 16P 9 S 1 N) 7N 1)N N + 1) N + ) 7N 1)N 3 N + 1) 3 N + ) 08 N + N + ) 3P 3 + S S 1 9N 1)N N + 1) N + ) 81N 1)N 4 N + 1) 4 N + ) 3 3P 31 4 N ) + N + } + 43N 1)N 5 N + 1) 5 N + ) 4 + 9N 1)N N + 1) ζ 3 + N + ) { N ) + N + S1 N) 4 4 N + N + ) P 6 S 1 N) 3 +C F C A T F 9N 1)N N + 1) + N + ) 7N 1) N 3 N + 1) 3 N + ) + N 16P S 3, N) N 1)N 3 N + 1) 16P S 1,, 1, N) N 1)N 3 N + 1) + 16P S,1, 1, N) N 1)N 3 N + 1) 16P S 1,1,1, 1, 1, N) N 1)N 3 N + 1) 3 N + N + ) S1,1,, 1, 1, N ) N 1)N N + 1) + 3 N + N + ) S1,1,, 1, 1, N ) N + ) N 1)N N + 1) N + ) + 3 N + N + ) S1,,1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,1,1,1, 1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,,1, 1, 1, N ) N 1)N N + 1) N + ) 3 N + N + ) S1,1,1,1, 1, 1, 1, N ) N 1)N N + 1) N + ) + } +

30/34 4000 000 0 x a 3),PS Qq x) 000 4000 exact 6000 Ox 1 ln x) Ox 1 ) + Ox 1 ln x) Ox 1 ) + Ox 1 ln x) + i 8000 Olni x) 10 5 10 4 10 3 10 10 1 1 x Figure: xa 3),PS Qq x) in the low x region solid red line) and leading terms approximating this quantity; dotted line: leading small x approximation Olnx)/x), dashed line: adding the O1/x)-term, dash-dotted line: adding all other logarithmic contributions.

31/34 0-1000 x a 3),PS Qq x) -000-3000 -4000-5000 10 5 10 4 10 3 10 10 1 1 x Approx. A,B exact Ox 1 ln x) Ox 1 ) + Ox 1 ln x) Figure: Comparison of the exact result for xa 3,PS Qq x) solid red line) with an estimate in Kawamura et. al. shaded area). Also shown are the first two leading small x contributions.

0.001 0 0.001 0.00 0.003 0.004 0.005 0.006 0 Oa s) Oa 3 s) Q = 100 GeV Q = 00 GeV 0.005 0.01 0.015 0.0 0 0.01 0.0 0.03 0.04 Q = 500 GeV Q = 1000 GeV 0.05 Q = 5000 GeV Q = 10000 GeV 0.06 10 5 10 4 10 3 10 10 1 10 5 10 4 10 3 10 10 1 1 x Figure: The bottom contribution by the Wilson coefficient H PS Q, to the structure function F x, Q ) as a function of x and Q choosing Q = µ, m b = 4.78GeV on shell scheme). 3/34

33/34 3-Loop OME: A gg,q a 3) gg,q = ) i i i j=1 4 j S 1 j 1) ) j j j 7ζ 3 4 i i + 1 ) 1 + 1) N { C F 16 N ) + N + N T F N N + 1) i=1 ) 18 + γ gq 0) S 4 S 3 S 1 + S 3,1 + S, + 4 5N + 5N ) S 1 S 3NN + 1)N + ) 3NN + 1)N + ) ) i i i j=1 4 j S 1 j 1) ) j j j 7ζ 3 4 i i + 1 ) 4P 69 S 1 3N 1)N 4 N + 1) 4 N + ) + ) + 16P 4 N +C A C F T F 3N 1)N N + 1) + N + ) i=1 3P S, N 1)N N + 1) N + ) 64P 14 S,1,1 16P 3 S 4 4P 63 S 4 + + 3N 1)N N + 1) N + ) 3N 1)N N + 1) N + ) 3N )N 1)N N + 1) N + ) ) i i S 1 j 1) ) i j +C A T 4P 46 N j=1 j j 7ζ 3 56P 5 S, F 3N 1)N N + 1) N + ) i=1 4 i i + 1 ) + 9N 1)N N + 1) N + ) + 3P 30 S,1,1 + 16P 35 S 3,1 + 16P 44 S 4 16P 5 S 8P 36 S 9N 1)N N + 1) + N + ) 7N 1)N N + 1) + N + ) 9N 1)N N + 1) + ) N 16P 48 4 N N 4 i S 1 i 1) ) i=1 i +C F TF i i 7ζ 3 3P 86 S 1 3N 1)NN + 1) N + )N 3)N 1) 81N 1)N 4 N + 1) 4 N + )N 3)N 1) 16P 45 S } + 1 16P 45 S + + 7N 1)N 3 N + 1) 3 N + ) 9N 1)N 3 N + 1) 3 N + ) Also, with this calculation we were able to rederive the three loop anomalous dimension γ gg 3) agreement with the literature. for the terms T F, and obtained

34/34 Conclusions 009: 10-14 Mellin Moments for all massive 3-loop OMEs, WC. 010: Wilson Coefficients L 3),PS q N), L 3),S g N). 013: Reduze has been adapted to the case where we have operator insertions, and used for reductions to master integrals. Complicated master integrals have been computed using a variety of methods. In particular, the differential equations method has allowed us to tackle integrals up until now untreatable with other methods. Emergence of generalized sums and new functions including a large number of root-letters in iterated integrals. 3),S A gq,q, A3),NS,TR qq,q and A 3),PS Qq have been completed. The corresponding 3-loop anomalous dimensions were computed, those for transversity for the first time ab initio. 014: The terms TF in A3) gg was computed. 015: Full A 3) gg is now available. Different new Computer-algebra and mathematical technologies have been and continue to be developed.