Our Sun Our Star. Image credit: JAXA. OU-L P SC 100 Spring, /81

Similar documents
The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

The Sun sends the Earth:

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Chapter 8 The Sun Our Star

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

The General Properties of the Sun

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

Chapter 10 Our Star. X-ray. visible

Weight of upper layers compresses lower layers

Astronomy Chapter 12 Review

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Astronomy Ch 16 The Sun. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1 A= one Angstrom = 1 10 cm

Astronomy 1 Winter 2011

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Stars. The size of the Sun

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE.

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun is the nearest star to Earth, and provides the energy that makes life possible.

The Sun. October 21, ) H-R diagram 2) Solar Structure 3) Nuclear Fusion 4) Solar Neutrinos 5) Solar Wind/Sunspots

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun.

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

A Closer Look at the Sun

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

The Sun ASTR /17/2014

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

The Sun. SESAME Astronomy Week 4. Thursday, February 10, 2011

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Correction to Homework

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun.

Lecture 17 The Sun October 31, 2018

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Helios in Greek and Sol in Roman

1-4-1A. Sun Structure

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from:

The Sun. The Chromosphere of the Sun. The Surface of the Sun

Astronomy 150: Killer Skies. Lecture 18, March 1

Astronomy 1 Fall Reminder: When/where does your observing session meet? [See from your TA.]

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Astronomy Exam 3 - Sun and Stars

Stars and Galaxies. The Sun and Other Stars

PTYS/ASTR 206. The Sun 3/1/07

Chap 14: The Sun A Typical Star Here s the Story I ll Unfold for you

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text

Astronomy 210. Outline. Nuclear Reactions in the Sun. Neutrinos. Solar Observing due April 15 th HW 8 due on Friday.

Chapter 14 Our Star Pearson Education, Inc.

The Structure of the Sun. CESAR s Booklet

The Interior Structure of the Sun

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

Hydrogen Burning in More Massive Stars.

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

Our Dynamic Star. Dr. Katherine Auld Bentonville Public Library March 14, 2017

2/6/18. Topics for Today and Thur. ASTR 1040: Stars & Galaxies. EUV and Visible Images

Astronomy. Our Star, The Sun

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent?

14.1 A Closer Look at the Sun

Hydrogen Burning in More Massive Stars and The Sun.

The Magnetic Sun. CESAR s Booklet

How the Sun Works. Presented by the

An Overview of the Details

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

Summer 2013 Astronomy - Test 3 Test form A. Name

Student Instruction Sheet: Unit 4 Lesson 3. Sun

1.3j describe how astronomers observe the Sun at different wavelengths

Chapter 23. Light, Astronomical Observations, and the Sun

The Project. National Schools Observatory

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party

AST 101 Intro to Astronomy: Stars & Galaxies

4 Layers of the Sun. CORE : center, where fusion occurs

Today The Sun. Events

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

Astr 1050 Mon. March 30, 2015 This week s Topics

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages

Solar Activity The Solar Wind

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

Prentice Hall EARTH SCIENCE

Proton-proton cycle 3 steps PHYS 162 1

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Agenda. 15. Our Star I say Live, Live, because of the Sun, The dream, the excitable gift. The Sun s Energy Source Why Does the Sun Shine?

The Sun Our Extraordinary Ordinary Star

An Overview of the Details

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

Stellar Astronomy Sample Questions for Exam 3

Transcription:

Our Sun Our Star Image credit: JAXA OU-L P SC 100 Spring, 2009 1/81 1

Diameter: 1,400,000 km = 864,000 miles = 4.5 light-seconds 1,300,000 Earths could fit inside! 109 Earths would fit across the diameter of the sun OU-L P SC 100 Spring, 2009 2/81 2

Mass: 2 x 10 30 kg or 330,000 times Earth s mass Density: 1.41 g/cm 3 OU-L P SC 100 Spring, 2009 3/81 3

What planet has this same composition? 4 OU-L P SC 100 Spring, 2009 4/81

Surface temp: 5800 K, 5500 o C, 11,000 o F Luminosity total energy output at all wavelengths = 4 x 10 26 watts/second (more than 6 moles of 100 watt light bulbs) OU-L P SC 100 Spring, 2009 5/81 5

4.5 million metric tons of H are converted to He every second Expected lifetime: 10 billion years Distance from earth: 1 A.U. = 93,000,000 miles = 150,000,000 km = 8.33 light minutes OU-L P SC 100 Spring, 2009 6/81 6

1 rotation takes 27.5 days at the equator, but 31 days at the poles! (Differential rotation) How was this determined? OU-L P SC 100 Spring, 2009 7/81 7

Image Credit: SOHO 8 OU-L P SC 100 Spring, 2009 8/81

OU-L P SC 100 Spring, 2009 9/81 9

The Sun s Structure 3 Interior Layers The core produces the energy The radiative zone The convective zone 3 Atmosphere Layers Photosphere Chromosphere Corona OU-L P SC 100 Spring, 2009 10/81 10

OU-L P SC 100 Spring, 2009 11/81 11

OU-L P SC 100 Spring, 2009 12/81 12

The Core 16,000,000 K (a star s core must be at least 8,000,000 K to start fusing H to He. no real atoms, only a soup of protons, electrons, and some larger atomic nuclei (He and C). all radiation produced is gamma (γ) OU-L P SC 100 Spring, 2009 13/81 13

Radiative Layer not hot enough for fusion normally transparent gases have become opaque to light. Photons of light bounce from one atom to another in a random walk, like a gigantic pinball game. OU-L P SC 100 Spring, 2009 14/81 14

Radiative Layer A given photon may take 100,000 years to reach the next layer. As photons travel, they slowly lose energy, shifting down towards the X- ray region of the spectrum. Temperature of this layer falls with increasing distance from core. OU-L P SC 100 Spring, 2009 15/81 15

Convective Zone Still hot enough to be opaque to light. Currents of gas move vertically, like water boiling in a pan. Energy is transported by convection, not by radiation. This layer is like earth s mantle. OU-L P SC 100 Spring, 2009 16/81 16

OU-L P SC 100 Spring, 2009 17/81 17

The tops of convection cells can be seen near the sunspots. They are called granules, or granularity. Image Credits: SOHO/NASA/ESA and JAXA OU-L P SC 100 Spring, 2009 18 18/81

Granularity movie http://apod.nasa.gov/apod/ap090405.html 19 OU-L P SC 100 Spring, 2009 19/81

The Photosphere Innermost of the sun s atmosphere layers. Gas cools enough that it becomes transparent to light. Sunlight originates from this layer. This is the surface that we see. Only 300 km thick. OU-L P SC 100 Spring, 2009 20/81 20

Actual color of photosphere OU-L P SC 100 Spring, 2009 21/81 is slightly greenish. 21

The Chromosphere 2 nd atmosphere layer. Glows in red H-α light (the red line from the level 3 level 2 electron transition in H atoms). Filters out the greenish color of the photosphere, so we see yellow light. Several thousand kilometers thick. OU-L P SC 100 Spring, 2009 22/81 22

OU-L P SC 100 Spring, 2009 23/81 Image Credit: SOHO/NASA/ESA 23

The Corona Millions of kilometers thick, but extremely low density. Sun s magnetic field agitates corona, raises temperature back up to about 2,000,000 K. Only visible during a total solar eclipse, or from space with specially designed telescopes. OU-L P SC 100 Spring, 2009 24/81 24

OU-L P SC 100 Spring, 2009 25/81 25

Features on the Sun s Surface Produced by sun s magnetic field. Prominences & flares. Sunspots Coronal Holes Coronal Mass Ejections OU-L P SC 100 Spring, 2009 26/81 26

Differential Rotation Differential rotation winds up and tangles the magnetic field, resulting in surface storms. Process is not very well understood. OU-L P SC 100 Spring, 2009 27/81 27

OU-L P SC 100 Spring, 2009 28/81 28

OU-L P SC 100 Spring, 2009 29/81 29

There s still a lot we don t know Why doesn t the sun have activity all the time? The magnetic field should be winding up and tangling constantly. Does the sun produce the same strength of magnetic field all the time? Is it structured differently at some times than at others? OU-L P SC 100 Spring, 2009 30/81 30

31

Prominences & Flares When a loop of the sun s magnetic field projects out from the surface, some of the hot gas from the photosphere may flow along the field lines in arcs or loops, called prominences. OU-L P SC 100 Spring, 2009 32/81 32

A loop prominence lets us visualize the magnetic field. OU-L P SC 100 Spring, 2009 33/81 33 Image Credit: TRACE/NASA

34

OU-L P SC 100 Spring, 2009 35/81 35 Image Credit: SOHO/NASA/ESA

Flares Sometimes, the magnetic field lines disconnect from the sun. Hot gas trapped inside the new loop of magnetic field travels outward from the sun as a solar flare. OU-L P SC 100 Spring, 2009 36/81 36

OU-L P SC 100 Spring, 2009 37/81 Image Credit: SOHO/NASA/ESA 37

Sun spots Where the loops of magnetic field penetrate the sun s surface, they cool it. Sunspots occur in pairs of (+) and (-) polarity. Sunspots are still about 3500 K hot enough to melt anything on the earth, but 2000 K cooler than the surrounding surface. OU-L P SC 100 Spring, 2009 38/81 38

OU-L P SC 100 Spring, 2009 39/81 39

OU-L P SC 100 Spring, 2009 40/81 40

Umbra Penumbra OU-L P SC 100 Spring, 2009 41/81 41

Sunspot Cycle The number of sunspots varies from year to year, along with the overall magnetic activity of the sun. We re used to hearing of an 11 year cycle. That s only for the overall number of sunspots. OU-L P SC 100 Spring, 2009 42/81 42

Sunspot Cycle The real cycle is 22.2 22.4 years long, and includes 11 years of the magnetic field with (+) polarity, then another 11 years with (-) polarity. We also see sunspots migrate from high latitudes to nearer the equator as the cycle progresses. OU-L P SC 100 Spring, 2009 43/81 43

OU-L P SC 100 Spring, 2009 44/81 44

You are here OU-L P SC 100 Spring, 2009 45/81 45

Sometimes, the cycle quits! 1645 to 1715, few sunspots observed. Maunder Minimum. Mini ice age across Europe. OU-L P SC 100 Spring, 2009 46/81 46

OU-L P SC 100 Spring, 2009 47/81 47

Coronal Holes Actual holes or windows in the sun s corona Solar wind can easily blow through. When one of these points towards the earth, the velocity and density of the solar wind increases. OU-L P SC 100 Spring, 2009 48/81 48

A coronal hole a window to the interior. OU-L P SC 100 Spring, 2009 49/81 49 Image Credit: SOHO/NASA/ESA

You can see the solar wind blowing thru several coronal holes. OU-L P SC 100 Spring, 2009 50/81 50 Image Credit: SOHO/NASA/ESA

One of the worst events During the active phase, the magnetic field sometimes gets tangled up so tight, that the sun blows off a portion of its entire corona. This is a coronal mass ejection (CME). A CME can be very damaging to electrical systems on the earth. OU-L P SC 100 Spring, 2009 51/81 51

CME in progress OU-L P SC 100 Spring, 2009 52/81 52 Image Credit: SOHO/NASA/ESA

Watch a CME in progress http://sohowww.nascom.nasa.gov/ OU-L P SC 100 Spring, 2009 53/81 53

CME s are made up of charged particles, have magnetic and electrical fields. Fields cause electrical systems to build up abnormally high voltages. In the winter of 2000-01, a CME knocked out power to all of eastern Canada & the northeastern US for nearly a week. OU-L P SC 100 Spring, 2009 54/81 54

Satellites are damaged by CME s, so we spend $ on special shielding. Communications, especially broadcast radio & TV, can be knocked out by CME s for hours at a time. OU-L P SC 100 Spring, 2009 55/81 55

Missions to the Sun SOHO Ulysses Genesis TRACE Hinode ( Sunrise - Japan s version of SOHO) OU-L P SC 100 Spring, 2009 56/81 56

SOHO (Solar and Heliospheric Observatory) a joint venture between ESA & NASA. Looks continuously at the sun from a fixed spot in space. Observes flares, CME s & comets falling into the sun! OU-L P SC 100 Spring, 2009 57/81 57

OU-L P SC 100 Spring, 2009 58/81 sohowww.nascom.nasa.gov/ 58

Ulysses designed to orbit over the sun s poles & provide a perspective that we can t get from earth. This is ESA s logo. 59 OU-L P SC 100 Spring, 2009 59/81

Ulysses mission 60 ulysses.jpl.nasa.gov/ OU-L P SC 100 Spring, 2009 60/81

Genesis Mission The Genesis mission was designed to orbit the sun and collect samples of the solar wind. It returned these particles to Earth for examination. Genesis orbited at a point called the L1 Lagrange point - a place in space where earth s gravity exactly cancels the sun s gravity. OU-L P SC 100 Spring, 2009 61/81 61

OU-L P SC 100 Spring, 2009 62/81 genesis.lanl.gov/ 62

Genesis Solar Wind Sampling Mission genesismission.jpl.nasa.gov/ 63

The TRACE spacecraft (Transition Region and Coronal Explorer) provides images like these. 64

NASA s twin Stereo spacecraft, launched in 2006, observe the sun from different points in space, allowing us to see ALL of the sun for the first time! 83 65

84 The Solar Dynamics Observatory or SDO now complements SOHO with more modern instruments. It is the most recent addition to the solar fleet, launched in Feb. 2010. 66

How does the sun make its energy? Fusion of H to He occurs in a process called the proton-proton chain. Larger, heavier stars fuse H to He using C, N, and O (CNO cycle) OU-L P SC 100 Spring, 2009 64/81 67

A review of the symbols a proton: 1 1H or p + (a proton is the nucleus of a normal hydrogen atom.) neutron: n o electron: e - positron: e + (a positively charged electron or antimatter ) OU-L P SC 100 Spring, 2009 65/81 68

more particles actors on the stage neutrino: ν (a tiny, nearly massless particle with no charge that barely interacts with normal matter.) gamma ray: γ (the highest energy form of light) OU-L P SC 100 Spring, 2009 66/81 69

Isotopes / nuclear symbols What does 4 2He mean? How many p +, n o in 56 26Fe? neutrons are the nuclear glue that hold a nucleus together. OU-L P SC 100 Spring, 2009 67/81 70

The first collision of three The first step in the p-p chain is the collision of 2 protons. One proton immediately shatters, becoming a neutron. The new neutron gets rid of its (+) charge by giving off a positron (e + ) and a neutrino (ν). The resulting p + n o is a deuterium nucleus. 71 OU-L P SC 100 Spring, 2009 68/81

p + ν e + e - γ p + n o p + OU-L P SC 100 Spring, 2009 69/81 72

A 2 nd collision Another high speed proton (p + ) collides with the deuterium nucleus (p + n o ) and sticks. This collision gives off a gamma ray (γ) The result is a 3 2He nucleus: (p 2 n o ) +2. OU-L P SC 100 Spring, 2009 70/81 73

p + n o γ (p 2 n o ) +2 p + OU-L P SC 100 Spring, 2009 71/81 74

Collision #3 Two 3 2He nuclei (p 2 n o ) +2 collide headon to form a normal helium nucleus, 4 2 He. In the process, they give off 2 protons. OU-L P SC 100 Spring, 2009 72/81 75

(p 2 n o ) +2 p + (p 2 n o 2) +2 (a He nucleus) (p 2 n o ) +2 The 2 protons OU-L P SC 100 Spring, 2009 73/81 p + start the chain over. 76

Image Credit: atropos.as.arizona.edu/ OU-L P SC 100 Spring, 2009 74/81 Here s the overall p-p chain 77

What goes in: 6 protons (H nuclei) What comes out: 1 He nucleus 2 protons 2 positrons 2 neutrinos 2 gamma rays (4 gamma rays if you count the annihilation of the positrons) OU-L P SC 100 Spring, 2009 75/81 78

The Neutrino Problem Until recently, we could only detect about 1/3 of the neutrinos we ought to observe from the p-p chain. For the past several years, solar scientists weren t sure if their model was correct. OU-L P SC 100 Spring, 2009 76/81 79

The Neutrino Problem Neutrinos are detected by the flashes of light (scintillations) they produce as they interact with water molecules in huge tanks underground (to minimize interference from cosmic rays.) OU-L P SC 100 Spring, 2009 77/81 80

Super Kamiokande neutrino detector, Japan. Image Credit: pbs.org 81 OU-L P SC 100 Spring, 2009 78/81

Neutrino Problem Solved! Neutrinos change type (or flavor ) while they re on their way from the sun. Counting these other flavors of neutrinos gives a total that s just what s expected. This also proves that neutrinos have mass (tiny, but measurable.) OU-L P SC 100 Spring, 2009 79/81 82

Sun in 3 different ultraviolet wavelengths. OU-L P SC 100 Spring, 2009 80/81 Image Credit: SOHO/NASA/ESA 83

Additional Credits solar-heliospheric.engin.umich.edu/ solar.physics.montana.edu/ helio.estec.esa.nl/ulysses/ www.bbso.njit.edu/ csep10.phys.utk.edu/ Peters Planetarium Image Library, for images not otherwise credited. 84