MATTER Fill in the following chart for TYPICAL Solids, Liquids and Gases (not water) State of Matter Particle Arrangement Regular or Irregular

Similar documents
2. Identify each of the following samples of matter as heterogeneous or homogeneous.

5. All isotopes of a given element must have the same (A) atomic mass (B) atomic number (C) mass number (D) number of neutrons

Spring Semester Final Exam Study Guide

5. What is the name of the compound PbO? 6. What is the name of HCl(aq)?

2. If a gas is released in a reaction (ex: Hydrogen gas bubbles off), is it written as a reactant or a product?

Chemistry Final Exam: Practice Problems

Chemistry Final Exam Sample Items


b. Na. d. So. 1 A basketball has more mass than a golf ball because:

CHEMISTRY CP Name: Period:

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Chemistry Final Review 2017

Chemistry Exam Review

Name Pd SN Date Chemistry Review Packet- Spring 2014

Chemistry FINAL: CONTENT Review Packet

CP Physical Science Chemistry: Bell Work, Notes, Study Guides

Period: Chemistry Semester 1 Final Exam Review Packet. 1. What is the difference between a hypothesis and a theory?

(C) hydrogen chloride (D) perchloric acid REASON: (aq) tells us that it is a mixture of HCl with water. When HCl is mixed with water, it is an acid.

Physical Science Study Guide

Silver nitrate solution is added to sodium dichromate solution

Mr. Rivas Chemistry Final Exam Extra Credit Review Packet 2015

Answer Sheet for Sample Problems for Chemistry Level 1 Final Exam 2016 Study Guide

3. When the external pressure is kpa torr, water will boil at what temperature? a C b C c. 100 C d. 18 C

CHAPTERS 4 & 25: Structure of the Atom and Nuclear Chemistry 6. Complete the table: Mass (amu) charge Proton 1 +1 Neutron 1 0 Electron 0-1

Regents Chemistry Unit 3- Bonding, Moles & Stoichiometry Study Guide & Pre-Test KEY

Part A Answer all questions in this part.

NAME: Chemistry Final Exam Review *=equations not given on Reference Sheet Unit 1: Math & Measurement Main Topics: Conversions, Significant Figures,

Chemistry 1-2E Semester I Study Guide

Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material

Final Exam Study Guide Honors Chemistry Semester Multiple Choice Questions

Chemistry I 2nd Semester Exam Study Guide

SPRING 2017 CHEMISTRY FINAL EXAM REVIEW

Solid Gas Liquid Plasma

Chemistry 2 nd Semester Final Exam Review

1. Determine the mass of water that can be produced when 10.0g of hydrogen is combined with excess oxygen. 2 H 2 + O 2 2 H 2 O

Chemistry. Essential Standards Chemistry

What type of solution that contains all of the

Bonding Mrs. Pugliese. Name March 02, 2011

Chemistry Study Guide

Test Booklet. Subject: SC, Grade: HS MCAS 2010 High School Chemistry. Student name:

Chemistry Midterm Review

Unit Five- Chemical Quantities Chapter 9: Mole ratios, conversions between chemicals in a balanced reaction (mole, mass), limiting reactant, % yield

Regents review Physical properties of matter

Semester 1 Review Chemistry

Science 9 Midterm Study Guide

Name May 2, 2012 Physical Behavior of Matter and Bonding Review

Name: Period: AP Take Home Practice Test for Unit 0.5 Exam

CHEMISTRY HONORS LEOCE Study Guide

Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.

1. Which atomic symbol represents an isotope of sulfur with 17 neutrons?

This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24

ACP Chemistry (821) - Mid-Year Review

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Advanced Chemistry Final Review

2nd Semester Exam Review. C. K eq = [N 2][H 2 ]

Questions 1 to 58 must be answered on the Scantron sheets.

Final Exam Review Questions You will be given a Periodic Table, Activity Series, and a Common Ions Chart CP CHEMISTRY

Chapter 1 The Atomic Nature of Matter

PRACTICE COMPREHENSIVE EXAM #1 7 th GRADE CHEMISTRY

The Periodic Table & Formation of Ions

Chem 101 Review. Fall 2012

Name: Period: CHEMISTRY I HONORS SEMESTER 1 EXAM REVIEW

Science Olympiad Regional UW-Milwaukee Chemistry test 2013

AP CHEMISTRY THINGS TO KNOW

Symbol Atomic Number

2. What is the charge of the nucleus in an atom of oxygen-17? (1) 0 (2) 2 (3) +8 (4) +17

Column B 5. periodic table a. A vertical column of elements in the

2014 Chemistry 1 st Semester Exam Review Packet

Mid-Term Review (HERBERHOLZ - Honors Chemistry) Chapter 2: 1. How many significant digits are in the following numbers?

Name Date Class PROPERTIES OF SOLUTIONS

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C?

Chapter 6: Chemical Bonds

Chapter How many grams of a 23.4% by mass NaF solution is needed if you want to have 1.33 moles of NaF?

Name: 1. Show all work on Math Problems!!! Significant Figures and Calculations (*all math problems will require the use of sig figs)

Quantitative chemistry Atomic structure Periodicity

Third Quarter Cumulative Review Questions. 1. Which factor distinguishes a metallic bond from an ionic bond or a covalent bond?

Chemistry Final Exam Review

2 nd Semester Study Guide 2016

SCI-CH Chem Test II fall 2018 Exam not valid for Paper Pencil Test Sessions

4. Draw a concept map showing the classifications of matter. Give an example of each.

Chm 116 (Sp 2004) - Review of Chm 115

Chemistry Released Questions

Chemistry Spring 2018 Final Exam Review

Chemistry Midterm Exam Review Sheet Spring 2012

First Semester Final Exam Study Guide

Chem 127, Final Exam December 14, 2001

1. What is a dot diagram? 2. Drawing dot diagrams. Name:

FALL SEMESTER REVIEW NAME: PERIOD: 3. (Unit 2) Is the following picture representing accuracy, precision or both? Explain the difference.

A. ATOMS Name Period Date 1. Complete the following table. Element Symbol Number of Protons. Number of electrons Ac 227

General Chemistry First Semester Final Exam Study Guide 60 multiple choice questions

Chemistry 20 Lesson 36 The Whole Enchilada

CP Chemistry Semester 1 Final Test Review

REVIEW OF BASIC CHEMISTRY ANSWER KEY

(B) K2O potassium dioxide

Test Booklet. Subject: SC, Grade: HS 2008 MCAS High School Chemistry. Student name:

AP Chemistry Summer Assignment

Test Booklet. Subject: SC, Grade: HS 2009 End of Course Chemistry. Student name:

Electronic Structure and Bonding Review

Chemistry. End of Course. Student Name and Date

Name May 2, 2012 Physical Behavior of Matter and Bonding Review

Transcription:

Name Period Mr. Rivas Super Awesome Chemistry Final Exam STUDY GUIDE MATTER Fill in the following chart for TYPICAL Solids, Liquids and Gases (not water) State of Matter Particle Arrangement Regular or Irregular Shape Definite or Indefinite Density Rank 1 = highest 3 = lowest Gas Energy Rank 1 = highest 3 = lowest Compressibility Yes or No Liquid Solid Atoms draw a diagram of an atom of Lithium (mass number 7), labeling the following parts nucleus, electron cloud, protons, neutrons, electrons Label as: molecule, atom, compound, substance, homogeneous mixture, heterogeneous mixture 1. 2. 3. 4. 5. 6. 7. H 2O A single particle of pure potassium A sample of sand scooped from a beach Sodium chloride Iced tea The smallest particle of an element that retains all of its chemical properties Chicken soup PHYSICAL AND CHEMICAL CHANGES AND PROPERTIES Classify the following as a chemical or physical property or chemical or physical change 1. Liquid collects on the side of a cold drink glass 2. 3. 4. 5. Hexane is flammable Baking soda decomposes in the cake, releasing CO 2 to make it fluffy. Copper II sulfate is blue. Ice is melting 6. Pure water has a density of 1 g/cm 3 STATES OF MATTER Mark the statements as true or false. If false, make changes to correct the statement. 1. Liquids have the greatest amount of kinetic energy among the phases of matter 2. In general, a solid is the densest phase of matter. 1

3. Particles in a solid demonstrate rotation, vibration and translation. 4. The particles of liquids have low amounts of translation unless they are stirred. 5. When a solid is melting, its temperature is still rising as it melts. 6. Both solids and liquids can flow. 7. Translation is the type of kinetic energy in which a particle moves from place to place. DENSITY CALCULATIONS Solve the following problems involving density calculations. Show all work. 1. What is the formula for density? 2. A cube is 17 cm 3 in volume with mass of 4.0 grams. Calculate its density. 3. If a ball has a density of 27.5 g/cm 3, determine its volume if its mass is 626 g. METRIC UNITS Perform the following determinations. 1. 1 kilometer (km) = meters (m) 2. 1 milligram (mg)= grams (g) 3. 1 liter (L) = milliliters (ml) 4. 2.3 kilograms (kg)= grams (g) 5. 12 meters (m) = centimeters (cm) ATOMIC STRUCTURE Fill in the following table with the appropriate information Subatomic Particle Charge Location Nucleus or Proton Neutron Electron electron cloud Mass Order of Size 1= largest 3 = smallest PERIODIC TABLE Answer the following questions What number of valence electrons indicates the most stable arrangement? Which group on the periodic table fits this description without forming ions? Elements on the periodic table are organized in order of increasing.? Elements are identified by the number of in their nucleus. The number of and may vary. 2

ORGANIZATION OF THE PERIODIC TABLE Label the following on the diagram below. Then, label the number of valence electrons inside the space for each group. s-block p-block d-block f-block metals non-metals alkali metals alkali earth metals Aluminum group Carbon group Nitrogen group Oxygen Group Halogens Noble Gases transition metals inner transition metals Define each of the following trends and indicate them the periodic table above using arrows. Be sure to indicate group and periodic trends. Atomic size Electronegativity Ionization energy ELECTRON CONFIGURATION Write the full electron configuration for the following elements. Circle the valence electrons. Helium Strontium Barium Oxygen Fluorine Neon 3

BONDING Draw the covalent structure for the following chemical formulas. Name the shape of the molecule. 1. PBr 3 3. SO 3 2. SO 2 4. PO 4 3- Indicate the correct word(s) to complete each sentence. 1. Ionic bonds are formed between metals and (other metals / non-metals) 2. Covalent bonds are formed between non-metals and (other non-metals / metals) 3. Metals (do / do not) form bonds with other metals 4. The transition metals (lose / gain) electrons to form ions. 5. When comparing degree of polarity between two bonds, the bond with the greatest polarity has the (largest / smallest ) difference between the two atoms in the bond. ELECTRON DOT STRUCTURES Draw the electron dot structure of the valence electrons for the following elements. Indicate which, if any, fulfill the octet rule when neutral. If they do not fulfill the octet rule when neutral, indicate the number of electrons gained or lost for the atom to fulfill the rule. Sodium Silicon Chlorine Magnesium Phosphorus Argon Aluminum Sulfur ION FORMATION Fill in the following table regarding ions: Element Group Name Type cation/anion Charge # and +/- Metal / Non-Metal Sodium Selenium Boron Phosphorus Calcium Fluorine Radon Phosphorus 4

BONDING Fill in the following table regarding ionic bonding: Cation Charge Anion Charge Balanced Formula Calcium Sulfur Chemical Name Strontium Aluminum Cesium Magnesium Boron Sodium Chlorine Iodine Nitrogen Oxygen Phosphorus Fluorine POLYATOMIC IONS Fill in the following chart: Cation Calcium Formula and Charge Anion Hydroxide Formula and Charge Balanced Formula Chemical Name Strontium Nitrate Ammonium Acetate Cesium Chlorate Magnesium Cyanide Boron Sulfate Sodium Nitrite BALANCING EQUATIONS AND REACTION SYMBOLS Balance all equations. Label reaction type for all reactions. 1. N 2(g) + H 2(g) NH 3(g) 2. KClO 3(s) KCl (aq) + O 2(g) 3. NaCl (s) + F 2(g) NaF (aq) + Cl 2(g) 5

4. AgNO 3(aq) + MgCl 2(aq) AgCl + Mg(NO 3) 2(aq) 5. C 3H 8(l) + O 2(g) CO 2(g) + H 2O (l) Answer the following questions based upon the formulas above: 1. What does the subscript (g) indicate in equation 1? 2. What does the subscript (s) indicate in equation 2? 3. Does equation 3 take place in water? How do you know? 4. Write the formula for the precipitate in equation 4. Rewrite its name in word format. 5. Write the 3 criteria for identifying a combustion reaction. 6. What does indicate in equation 2? REACTIONS AND STOICHIOMETRY: Perform the following stoichiometric calculations. Make sure you have a balanced equation! CH 4 + O 2 CO 2 + H 2O How many grams of O 2 are needed to react with 9.02 g of CH 4? 2. N 2 + H 2 NH 3 How many grams of NH 3 are formed when 11.7 g of H 2 react? 3. C + O 2 CO How many grams of carbon are needed to produce 0.98 g of CO? 6

GASES Name and describe the three types of particle motion. Indicate the phases of matter that exhibit each. Describe the Kinetic Theory of Gases and list the three assumptions associated with it. Define phase change. Define these types of phase changes. Give an example of where you might experience each. Melting Vaporization Freezing or Crystallization Condensation Evaporation Sublimation GAS LAWS: Solve the following problems using the gas laws 1. A gas with volume of 5.3 L at 17 C decreases to -3 C. Find the new volume. 2. A 2.1 L sample of gas a standard pressure is moved to a 5.2 L container. Find the new pressure. 3. An aerosol can contains gas at 15 atm and 25 C. Find the pressure inside the can at 100. C 4. Find the number of moles of gas in a container at the following conditions 6.0 atm, 3.6 L, and 118 C. 5. A gas at 742 mmhg and -18 C occupies 1.7 L. Find the volume of the gas at STP. 6. Define absolute zero. Give the temperature for it in both C and K. 7. A mixture of four gases is stored at 1187.3 mmhg. H2 is 127 mmhg, O2 is 350 mmhg and CO2 is 642 mmhg. Find the partial pressure of the Helium in the mixture. 8. Under what conditions does a gas stop acting ideal and begin acting real? 9. What volume does one mole of any gas occupy at STP? 7

CONVERSIONS Perform the following conversions: 1. 26 C to K 5. 23.5 atm to mmhg 2. -52 C to K 6. 89 kpa to Torr 3. 89 K to C 7. 768 mmhg to atm 4. 304 K to C 8. 11.2 atm to kpa WATER AND SOLUTIONS Draw a picture of a water molecule. Indicate the poles on this polar molecule. Write a definition and example for each of the following. Soluble Supersaturated Saturated Molarity Unsaturated Molality You have a solution of NaCl dissolved in distilled water. Which is the solute and which is the solvent? How many ions will the NaCl split into? Describe three ways to increase the rate of dissolving a substance. 8

MOLARITY AND MOLALITY Answer the following: Write the general formula for calculating the molarity of a substance. Write the general formula for calculating the molality of a substance. A solution is made by dissolving 5.0 moles of NaCl in 2.0 Liters of dh 2O. Calculate the molarity of the solution. A solution is made by dissolving 62. g of KCl in 0.50 L of dh 2O. Determine the molarity of the solution. A solution is made by dissolving 92.0 g of BaCl 2 in 5.6 kg of dh 2O. Determine the molality of the solution. MOLAR MASS AND PERCENT COMPOSITION Find the molar mass for the following formulas: BaCl 2 CuSO 4 NaNO 3 Ba(OH) 2 Determine the percent composition of the following: S in CuSO 4 NO 3 in NaNO 3 H 2O in CuSO 4 * 5 H 2O 9

THERMOCHEMISTRY Perform the following conversions: 41.2 kj =? J 816 J =? cal 0.0482 kj =? cal 71 0 F =? 0 C 132 0 C =? K 255 K =? 0 C 1. How much heat is required to raise the temperature of 23.5 g of copper from 250K to 298K? 2. What is the specific heat (in J/g 0 C) of an unknown substance if adding 0.124 kj of heat to 100g of the substance causes the temperature to increase by 12 0 C? 3. How much heat is absorbed by 100.0 ml of water if its temperature increased by 13.2 0 C? 4. If 15.00g of water at an initial temperature of 19 0 C absorbs 2.03 kj of heat, what will its final temperature be? 5. If you place 50.00g of a metal at a temperature of 98.0 0 C into 100.0mL of water at 22.3 0 C, and stir the mixture, what is the specific heat of the metal if the final Temperature of the mixture is 29.7 0 C? (answer in J/g 0 C) REACTION RATES AND EQUILIBRIUM Describe and give examples of three ways you can speed up the rate of a reaction. Explain Le Châtelier s Principle. How does Le Châtelier s Principle explain what happens to vapor pressure when a sealed bottle of soda is heated? Think of a reversible reaction in which heat is a product of the forward reaction. Now imagine that heat is added to the system. Which way will the system shift and why? Write the K eq equation for the following equilibrium reaction. aa + bb cc + dd What does it mean if K eq < 1. How about > 1? 10

What does it mean if Q > K eq? How about < K eq? Write an equilibrium constant expression for the following chemical reactions: 1. 2 HI g) H 2(g) + I 2(g) 2. 2 BrCl 2(g) Cl 2(g) + Br 2(g) 3. Fe 3O 4(s) + 4 H 2(g) 3 Fe (s) + 4 H 2O (g) Answer the questions based upon the following reaction. 2 BrCl (g) Cl 2(g) + Br 2(g) 1. Write K eq for the equation. 2. If [Cl 2] = 4.00 mol/l and [Br 2] = 4.00 mol/l, find the concentration of BrCl is K eq = 11.1. ACIDS AND BASES Explain the Arrhenius model of acids and bases. Explain the Brønsted-Lowry Model of acids and bases. Explain the Lewis Model of acids and bases. Explain the difference between monoprotic acids and polyprotic acids. Explain the difference between molar mass (gram formula mass) and gram equivalent mass. Calculate the ph of solutions having the following ion concentrations. a. [H+] = 1.0 x 10-2 M b. [H+] = 3.0 x 10-6 M c. [OH - ] = 8.2 x 10-6 M d. [OH - ] = 4.0 x 10-3 M 11

Write balanced equations for the following acid-based neutralization reactions. a. nitric acid and cesium hydroxide b. hydrobromic acid and calcium hydroxide c. sulfuric acid and potassium hydroxide d. acetic acid and ammonium hydroxide Answer the following questions regarding titration reactions. a. Determine the molarity of a CsOH solution if 30.0 ml of the solution is neutralized by 26.4 ml of a 0.250 M HBr solution. b. Find the molarity of a nitric acid solution if 43.33 ml of a 0.1000 M KOH solution is needed to neutralize 20.00 ml of a solution of unknown concentration. c. Find the concentration of a household ammonia cleaning solution if 49.90 ml of 0.5900 M HCl is needed to neutralize 25.00 ml of the cleaning solution. 12

BIG IDEAS Intro Unit 1. Chemists use the metric system when recording their measurements. 2. Dimensional analysis must be used to convert between measurement units. 3. Chemicals have both physical and chemical properties that can be used to tell them apart, and also to separate components of a mixture. 4. When it comes to evaluating a solute/solvent relationship, remember the phrase like dissolves like. Atoms/Periodic Table Units 1. Ionic compounds form when atoms gain or lose electrons. Metals lose electrons, nonmetals gain them. 2. The number of electrons gained or lost can be predicted with an understanding of the octet rule and the number of valence electrons an atom contains. 3. The periodic table is organized by electron configuration, and elements are classified as metals, nonmetals or metalloids based on physical and chemical properties. 4. Atoms have a central nucleus that contains the protons and neutrons, and electrons are found in orbitals located outside the nucleus. 5. Electron configurations are used to describe locations of electrons within levels, sublevels and orbitals. 6. Metal reactivity is summarized in the Metal Activity Series. Formula Writing/Moles/Chemical Reactions Units 1. Conversions between moles, particles, and mass are widely used in chemistry 2. Chemical reactions must be balanced with coefficients to obey the law of conservation of mass/atoms. 3. The quantity 6.02 x 10 23 is called a mole, and the periodic table lists the mass of 1 mole of each element s atoms, called the molar mass of the element. 4. Coefficients are interpreted as either particle, mole, or (if everything is a gas) liter ratios. 5. Stoichiometry is the name given to the process of using coefficients as mole ratios to convert between chemicals in a reaction equation. How much is used? How much is made? These questions can be answered with a stoichiometric calculation. Gases Unit: 1. 4 variables describe a gas behavior: P, V, n and T. 2. Boyle, Charles and Gay-Lussac developed mathematical gas laws that are used to predict and calculate changes in gas properties. 3. At STP, one mole of any gas occupies a volume of 22.4 L. This is called the molar volume of a gas. Solutions Unit: 1. Molarity and molarity are two units used to express the concentration of a solution quantitatively. 2. Concentrated and dilute are relative terms for expressing the concentration of a solution qualitatively. 3. Solutes and solvents are the two components of a solution. Thermochemistry Unit: 1. The collision theory explains that gas-phase chemical reactions occur when molecules collide with sufficient kinetic energy and proper orientation. 2. Heat, represented by q, is energy that transfers from one object to another because of a temperature difference between the objects. 3. An endothermic process absorbs heat from the surroundings. An exothermic process releases heat to the surroundings. 4. Calorimetry is the measurement of the heat flow into or out of a system for chemical and physical processes. The insulated device used to measure the absorption or release of heat in chemical or physical processes is called a calorimeter. 5. You can calculate the heat absorbed or released by the surroundings (q surr) using q = m x C p x ΔT. Equilibrium Unit: 1. Le Châtelier s principle describes what happens when stress is applied to a system in dynamic equilibrium. 2. A catalyst lowers the activation energy of a reaction. 3. K eq is used to determine whether reactants or products are favored in a reaction. 4. Q is used to determine whether a reaction will shift forward or backward. Acids and Bases Unit: 1. The Arrhenius, Brønsted-Lowry, and Lewis definitions of acids and bases are all based on different criteria. 2. ph is based on the concentration of H+ ions in solution. 3. An imbalance of H 3O + and OH - ions causes solutions to be either acidic or basic. 4. Titrations are used to determine the concentration of a solution using a solution of known concentration. 13