emittance coupling Hong Qin12 1,2, Ronald C. Davidson 1, Moses Chung 3, John J. Barnard 4, Tai-Sen F. Wang 5 PAC11, New York, March 29, 2011

Similar documents
Beam Dynamics with Space- Charge

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Numerical Computational Techniques for Nonlinear Optimal Control

arxiv: v1 [physics.acc-ph] 16 Apr 2015

Transverse Dynamics II

Phase Space Gymnastics

Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic * Focusing Lattices

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n

Differentiating Functions & Expressions - Edexcel Past Exam Questions

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Practical Lattice Design

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Low Emittance Machines

Transverse Centroid and Envelope * Descriptions of Beam Evolution

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

David Sagan. The standard analysis for a coupled lattice is based upon the formalism of Edwards

Accelerator Physics Homework #7 P470 (Problems: 1-4)

07. The Courant Snyder Invariant and the Betatron Formulation *

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

F O R SOCI AL WORK RESE ARCH

MANY BILLS OF CONCERN TO PUBLIC

Accelerator Physics Final Exam pts.

Particle Accelerators: Transverse Beam Dynamics

' Liberty and Umou Ono and Inseparablo "

4. Statistical description of particle beams

Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling *

Equations of motion in an accelerator (Lecture 7)

Bernhard Holzer, CERN-LHC

Edexcel GCE A Level Maths Further Maths 3 Matrices.

ILC Damping Ring Alternative Lattice Design **

Overview in Images. 5 nm

A. H. Hall, 33, 35 &37, Lendoi

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Tolerances for the Vertical Emittance in Damping Rings*

Transverse Equilibrium Distributions

06. Orbit Stability and the Phase Amplitude Formulation *

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

LOWELL WEEKLY JOURNAL

Envelope and Matrix Codes (TRACE 3-D & TRANSPORT Introduction)

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 7

Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code. Sven H. Chilton

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

What limits the gap in a flat dechirper for an X-ray FEL?

Beam conditioning for free electron lasers: Consequences and methods

Etienne Forest. From Tracking Code. to Analysis. Generalised Courant-Snyder Theory for Any Accelerator Model. 4 } Springer

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Announcements (repeat) Principal Components Analysis

Synopsis of Numerical Linear Algebra

Problem 1 HW3. Question 2. i) We first show that for a random variable X bounded in [0, 1], since x 2 apple x, wehave

Transverse Centroid and Envelope *

Linear coupling parameterization in the betatron phase rotation frame

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

Nonlinear dynamics. Yichao Jing

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia

Transverse Centroid and Envelope Descriptions of Beam Evolution*

Low Emittance Machines

UMER : The University of Maryland Electron Storage Ring

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x =

DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

BEAM DYNAMICS IN HIGH ENERGY PARTICLE ACCELER ATORS

Q SON,' (ESTABLISHED 1879L

Differentiation Review, Part 1 (Part 2 follows; there are answers at the end of each part.)

Nonlinear Single-Particle Dynamics in High Energy Accelerators

RF LINACS. Alessandra Lombardi BE/ ABP CERN

Transverse Equilibrium Distributions

Poisson Brackets and Lie Operators

Transverse Equilibrium Distributions

Transverse Beam Dynamics II

Accelerator Physics. Accelerator Physics Overview: Outline. 1. Overview

Accelerator Physics. Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU)

HWK#7solution sets Chem 544, fall 2014/12/4

Intro. Lecture 06: Initial Distributions

Bernhard Holzer, CERN-LHC

Analysis of a model for resonant extraction of intense beams by normal forms and frequency map

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

A Compact Magnetic Focusing System for Electron Beams Suitable with Metamaterial Structures

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21


Position Dependence Of The K Parameter In The Delta Undulator

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1

An Introduction to Optimal Control Applied to Disease Models

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

Nonlinear Dynamics - Methods and Tools. and a Contemporary ( ) framework. to treat Linear and Nonlinear Beam Dynamics PART 3

Pretzel scheme of CEPC

Storage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

Global Coupling and Decoupling of the APS Storage Ring

II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa

m+. + k ( q z = -m(qy zll yr - k ( q y = -m(e)z, (2) where k ( 8 ) = E2K(s),m(8)= R 2 M ( s ) and prime denotes

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus

Transverse Particle Resonances with Application to Circular Accelerators*

Transcription:

Theoretical study of transverse-longitudinal emittance coupling Hong Qin1 1,, Ronald C. Davidson 1, Moses Chung 3, John J. Barnard 4, Tai-Sen F. Wang 5 1. PPPL, Princeton University. Univ. of Science and Technology of China 3. Handong Global University, Korean 4. LLNL 5. LANL PAC11, New York, March 9, 011

Transverse-longitudinal emittance coupling gives better beams FEL (LCLS, Emma 06, Kim 03 ) Heavy ion fusion

Emittance dynamics from covariance matrix Two issues with coupled emittance dynamics s æ ö x xz xx xz ç xz z zx zz º xx xz x xz ç zx zz xz z çè ø º ò f dxdzdp dp b x z s T () = s0 s M() s M() s Transfer matrix for coupled dynamics Initial covariance matrix

Previous work and present study Emittance exchange in one pass through the coupling component. Emma et al 06, Cornacchia et al 0, Kim 03 Eigen-emittance Williamson s theorem 36. Dragt s book, Yampolsky et al 11. Kishek et al 99. How about the transfer matrix M(s)? How about a coupled lattice? Emittance exchange? Present study

D coupled transverse dynamics 1 T T H = q Aq, q= ( xzxz,,, ) 10 free parameters æ k 0 ö æ kx kxz ö A =, k = ç è0 I ø èçk k ø xz z skew-quadrupole

Transfer matrix Original Courant-Snyder theory for uncoupled dynamics: SO( ) scalar Non-commutative generalization for coupled dynamics: p y SO( ( 4 )

Envelope equation Original Courant-Snyder theory for uncoupled dynamics: Envelope scalar Non-commutative generalization for coupled dynamics: envelope matrix

Courant-Snyder Invariant Original Courant-Snyder theory for uncoupled dynamics: w: envelope scalar Non-commutative generalization for coupled dynamics: w: envelope matrix

Phase advance Original Courant-Snyder theory for uncoupled dynamics: Non-commutative generalization for coupled dynamics:

Phase advance Original Courant-Snyder theory for uncoupled dynamics: Non-commutative generalization for coupled dynamics:

Twiss functions Original Courant-Snyder theory for uncoupled dynamics: b a g = w = - ww - = w + w Non-commutative generalization for coupled dynamics: T b = w w T a =-w w - T T g = w w + w w ( ) 1

How did we do it? General problem n n Hamiltonian Eq. æ 0 I ö q = J H, J = ç çè- I 0 ø

Time-dependent canonical transformation S(t) q H = S( t) q 1 T = q A( t) q T Symplectic group: SJS T = J Target Hamiltonian Two transformations to At ( ) = 0

Dynamics of physical emittance s T () = s0 s M() s M() s Eignen-emittances are invariants. But physical emittance measures beam qualities e = Det [ s ] = e ( s = 0) 4D 4D æ x xx ö e º Det( s ), s º x x x ç çè xx x ø æ z zz ö º º ç ç çè zz z ø e Det ( s ), s z z z ç Dt Det ( ), xz xz xz æ x xz ö e º s s º ç xz z çè ø

Example Matched solution of the envelope matrix w Coupling skew-quad

Interesting dynamics of physical emittance Interesting dynamics Emittance does not match the lattice. No emittance exchange. Classical uncertain principle and minimum emittance theorem. But can be explored for beam better property at the focal point.

An interesting case e = e e = e = x0 z0 x z But, e = e ¹ const. x z

Conclusions Coupled focusing lattice generates interesting emittance dynamics. Generalized Courant-Snyder theory for coupled dynamics is the tool to understand the coupled emittance dynamics. Coupled emittance dynamics can be explored for better beam properties at the focal point.

Courant-Snyder theory for uncoupled dynamics Phase advance j ( t ) = ò t 0 dt w ( t) qs () = Iws ()cos[ j() s + j ] 0 Courant (1958) CS invariant envelope æ ö b æqö æq0 ö [ cosj a0sinj] bb0sinj + = M( t) b 0 ç èq ø çèq M( t) = 0 ø ç 1 + aa0 a0- a b 0 ç- sinj+ cosj [ cosj- asinj] èç çè bb bb b ø 0 0 b

Courant-Snyder theory for uncoupled dynamics q I = + ( wq - w q) = const. w -3 w () s + k() s w() s = w () s Courant-Snyder invarianti Courant (1958) Envelope eq.

Kapchinskij-Vladimirskij (KV) distribution (1959): Uncoupled N æi I ö = 1 + -, pee ç ø b x y f d KV pee x y è ex ey The only known solution x y I = + ( wx - xw ), I = + ( wy -yw ). x x x y y y w w x y -3-3 w + k w = w, w + k w = w, x x x x y y y y Kb Kb kx = kqx -, ky = kqy -, a( a + b) b( a + b) a º e w, b º e w. x x y y k qxy = k = qyx 0

Many ways [Teng, 71] to parameterize the transfer matrix Symplectic rotation form [Edward-Teng, 73]: Lee Teng uncoupled No apparent physical meaning No b function uncoupled CS transfer matrix Have to define beta function from particle trajectories? [Ripken, 70], [Wiedemann, 99]

A hint from 1D C-S theory æ b ö [ cosj a0sinj] bb0sinj + b 0 M( t) = ç 1 + aa - 0 a0 a b 0 ç- ç sinj+ cosj [ cosj- asinj] çè bb bb b ø 0 0 t dt b( t) = w ( t), a( t) =- ww, j( t) =ò. 0 b( t )

Application: Strongly coupled system Stability completely l determined d by phase advance Theorem 1: Unstable P () t has an eigenvalue with l ¹ 1 c one turn generalized phase advance Theorem : T c Stable JP [ ( t )- P ( t )] is positive (negative)-definite c

Application: Weakly coupled system Stability determined by uncoupled phase advance Theorem 1: Unstable P ( t) has an eigenvalue with l ¹ 1 c Unstable uncoupled tune cos f = cos f p x y uncoupled tune x ny = n (sum and difference resonace) n

Application: Weakly coupled system Stability determined d by uncoupled phase advance Theorem : T c Stable JP [ ( t )- P ( t )] is positive (negative)-definite c stable sin f = sin f x y unstable tbl n + n = (sum resonace) x y n

Numerical example mis-aligned FODO lattice mis-alignment angle k æcos[ q( s) ] sin[ q( s) ] ö = k q çè sin [ q ( s ) ] - cos[ [ q ( s ) ] ø [Barnard, 96]

Envelope matrix w

Rotation matrix P 1

Rotation matrix P

Non-Commutative Courant-Snyder theory for coupled transverse dynamics Step I S = JAS -SJA c c æs 1 S ö æ 0 I öæbi 0 öæs1 Sö æs1 Söæ 0 I öæk 0ö = - ç ès S ø çè-i 0øè ç 0 b øèçs S ø èçs S øèç-i 0 øè ç0 I ø 3 4 I 3 4 3 4

S = 0 w º S 4 S4 = bi S4 - S4k 1 b º b - I w - = b w -wk S is symplectic: 1 T b - ww = I

Step II z = Pz H = c 0 P =-PJA c

Generalized KV distribution in coupled focusing lattice k qxy = k ¹ 0 qyx æksx ksxy ö - y = - ksx, k s = ç çèk k ø syx sy 1 1 1 ( ) T ( ) w + wk = w w w k - - - T -1-1T T T T T ICS = x w w x+ ( x w -x w )( wx -w x) T - y- k x kx, k = k + k q q s Nb w ICS f = æ - ö KV d 1 Aep èç e ø n( x, y, s ) = òdxdyf KV ì T -1-1T N b / A, 0 x w w x< e, = ï í ï T -1-1T ïî 0, e < x w w x.

Envelope matrix equation ( - 1 ) - 1 ( - + k = 1 ) w w w w w T T k = k + k q s k s æksx ksxy ö = ç çè k k ø syx sy - Kb æ1/ a 0 ö = Q Q a + b ç è 0 1/ / b ø -1 ks 1 1T b * º w - w - 1 1 0 Q - l b * Q = æ ö çè 0 l ø Q = ( v, v ) 1 a / 1 = e l b = e/ l

T * 1 1T, * w - w - x b x= e b º Q Q l 0 b Q = ç çè 0 l ø - 1 * æ 1 ö ( v, v ) X a Y + = 1 = 1 X -1 b æ ö æxö Q = ç èy ø èçy ø a = e l / 1 b = / e l æ y / xö æxö - ks =- ç è y / y ø ç è y ø - Kb æ1/ a 0 ö = Q Q a + b çè 0 1/ b ø -1 ks æ y / Xö Kb æ1/ a 0 öæxö - = ç y / Y a b è ø + çè 0 1/ b øèçy ø

Generalized KV beam: pulsating & tumbling k æcos[ q( s) ] sin[ q( s) ] ö = k q ç èsin[ q( s) ] -cos[ q( s) ] ø Skew quad rotation angle