Oral exam practice problems: Algebraic Geometry

Similar documents
Chern classes à la Grothendieck

A TASTE OF TWO-DIMENSIONAL COMPLEX ALGEBRAIC GEOMETRY. We also have an isomorphism of holomorphic vector bundles

Porteous s Formula for Maps between Coherent Sheaves

Math 797W Homework 4

APPENDIX 1: REVIEW OF SINGULAR COHOMOLOGY

LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS

arxiv: v1 [math.ag] 13 Mar 2019

Special cubic fourfolds

Preliminary Exam Topics Sarah Mayes

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 48

Algebraic Curves and Riemann Surfaces

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

Chern numbers and Hilbert Modular Varieties

ALGEBRAIC GEOMETRY I, FALL 2016.

LECTURE 6: THE ARTIN-MUMFORD EXAMPLE

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

Resolution of Singularities in Algebraic Varieties

Hodge Theory of Maps

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

Divisor class groups of affine complete intersections

Algebraic Geometry Spring 2009

Diagonal Subschemes and Vector Bundles

INTERSECTION THEORY CLASS 6

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

SPACES OF RATIONAL CURVES IN COMPLETE INTERSECTIONS

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

COMPLEX ALGEBRAIC SURFACES CLASS 9

INTERSECTION THEORY CLASS 12

PROBLEMS FOR VIASM MINICOURSE: GEOMETRY OF MODULI SPACES LAST UPDATED: DEC 25, 2013

HARTSHORNE EXERCISES

DIVISOR THEORY ON TROPICAL AND LOG SMOOTH CURVES

SPACES OF RATIONAL CURVES ON COMPLETE INTERSECTIONS

COMPLEX ALGEBRAIC SURFACES CLASS 6

CHAPTER 1. TOPOLOGY OF ALGEBRAIC VARIETIES, HODGE DECOMPOSITION, AND APPLICATIONS. Contents

ALGEBRAIC GEOMETRY: GLOSSARY AND EXAMPLES

a double cover branched along the smooth quadratic line complex

Classification of Complex Algebraic Surfaces

Some remarks on symmetric correspondences

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Elliptic curves, Néron models, and duality

Riemann s goal was to classify all complex holomorphic functions of one variable.

3. Lecture 3. Y Z[1/p]Hom (Sch/k) (Y, X).

MODULI SPACES OF CURVES

Lecture VI: Projective varieties

STABLE BASE LOCUS DECOMPOSITIONS OF KONTSEVICH MODULI SPACES

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

STABLE BASE LOCUS DECOMPOSITIONS OF KONTSEVICH MODULI SPACES

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let:

The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves

Lecture 1. Toric Varieties: Basics

Holomorphic line bundles

Segre classes of tautological bundles on Hilbert schemes of surfaces

Picard Groups of Affine Curves

Part III Positivity in Algebraic Geometry

Monodromy of the Dwork family, following Shepherd-Barron X n+1. P 1 λ. ζ i = 1}/ (µ n+1 ) H.

LINE BUNDLES ON PROJECTIVE SPACE

On Mordell-Lang in Algebraic Groups of Unipotent Rank 1

MODULI OF SHEAVES, FOURIER-MUKAI TRANSFORM, AND PARTIAL DESINGULARIZATION

Algebraic v.s. Analytic Point of View

The Cone Theorem. Stefano Filipazzi. February 10, 2016

Curves of genus 2 on rational normal scrolls and scrollar syzygies. Andrea Hofmann

Quotients of E n by a n+1 and Calabi-Yau manifolds

Math 6510 Homework 10

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 18

arxiv:alg-geom/ v1 21 Mar 1996

STEENROD OPERATIONS IN ALGEBRAIC GEOMETRY

The generalized Hodge and Bloch conjectures are equivalent for general complete intersections

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON THREE DIMENSIONAL HYPERSURFACES

Algebraic Geometry (Math 6130)

ON NODAL PRIME FANO THREEFOLDS OF DEGREE 10

Math 6140 Notes. Spring Codimension One Phenomena. Definition: Examples: Properties:

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

Theta divisors and the Frobenius morphism

7. Classification of Surfaces The key to the classification of surfaces is the behaviour of the canonical

MT845: INTERSECTION THEORY, MODULI SPACE AND ENUMERATIVE GEOMETRY

INTERSECTION THEORY CLASS 7

ALEXANDER INVARIANTS OF HYPERSURFACE COMPLEMENTS

OLIVIER SERMAN. Theorem 1.1. The moduli space of rank 3 vector bundles over a curve of genus 2 is a local complete intersection.

PERIOD INTEGRALS OF LOCAL COMPLETE INTERSECTIONS AND TAUTOLOGICAL SYSTEMS

Riemann Surfaces and Algebraic Curves

arxiv: v1 [math.ag] 16 Aug 2017

arxiv:math/ v2 [math.at] 2 Oct 2004

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS

Corollary. Let X Y be a dominant map of varieties, with general fiber F. If Y and F are rationally connected, then X is.

Notes for Curves and Surfaces Instructor: Robert Freidman

Basic facts and definitions

ALGEBRAIC HYPERBOLICITY OF THE VERY GENERAL QUINTIC SURFACE IN P 3

The geometry of Landau-Ginzburg models

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON HYPERSURFACES

Higher-Dimensional Varieties

Ordinary Flops. CHIN-LUNG WANG (NCU and NCTS) (Joint work with H.-W. Lin)

arxiv:math/ v1 [math.ag] 9 Sep 2002

arxiv: v1 [math.ag] 20 Mar 2016

A NEW FAMILY OF SYMPLECTIC FOURFOLDS

MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED THETA DIVISORS

n P say, then (X A Y ) P

Transcription:

Oral exam practice problems: Algebraic Geometry Alberto García Raboso TP1. Let Q 1 and Q 2 be the quadric hypersurfaces in P n given by the equations f 1 x 2 0 + + x 2 n = 0 f 2 a 0 x 2 0 + + a n x 2 n = 0 respectively, where all the coefficients a i are nonzero and different from one another. How many singular elements are there in the pencil generated by Q 1 and Q 2? Denote by Q [λ:µ] P n the element of the pencil over [λ : µ] P 1, given by the equation n λ + µa i x 2 i = 0 i=0 A quadric hypersurface is singular if and only if it is not of maximal rank, so the singular elements are located at λ + µa i = 0, i = 0,... n; since the coefficients a i are distinct, there are n + 1 of them. Moreover, all of the singular fibers are quadric hypersurfaces of rank one less than the maximal, and thus cones over a nonsingular quadric hypersurface in P n 1 with vertex a point. RD1. a Calculate the Betti numbers of the intersection of the quadrics Q 1 and Q 2 of problem TP1. b In the case of odd n, calculate the Hodge numbers of Q 1 Q 2. a First of all, notice that Q 1 Q 2 is a complete intersection. By an iteration of Krull s principal ideal theorem, a subscheme defined by two equations has codimension at most two. It is clearly not of codimension zero, for f 1 and f 2 are nonzerodivisors. To see that it is not of codimension one, notice that f 1 and f 2 are irreducible and of the same degree; since they do not differ by a unit, they define different prime ideals. Q 1 Q 2 is smooth: the projective tangent plane at a point p = [x 0 :... : x n ] Q 1 Q 2 is the intersection of the tangent planes of Q 1 and Q 2 at p, i.e., it is given by the kernel of the matrix f 1 / x 0... f 1 / x n 2x 0... 2x n = f 2 / x 0... f 2 / x n 2a 0 x 0... 2a n x n Hence p is a singular point if the 2 2 minors of this matrix vanish at p. The equations of this singular locus are a i a j x i x j = 0 for 0 i < j n, whose only solutions are the coordinate points [1 : 0 :... : 0], [0 : 1 :... : 0],... [0 : 0 :... : 1], which are not contained in Q 1 nor in Q 2. 1

Using the Lefschetz hyperplane theorem and Poincaré duality, we have 1 if i even, 0 i 2n 2 b i = b n 2 if i = n 2 χ = n 1 b n 2 for n odd, and 1 if i even, 0 i 2n 2, i n 2 b i = b n 2 if i = n 2 χ = n 2 + b n 2 for n even. For another way of calculating the Euler characteristic of Q 1 Q 2, consider the exact sequence of vector bundles 0 T Q1 Q 2 T P n Q1 Q 2 N Q1 Q 2 0 with N Q1 Q 2 = OP n2 2 Q1 Q 2, which yields an equation on total Chern classes: c T P n Q1 Q 2 = c TQ1 Q 2 c NQ1 Q 2 1 + ω n+1 = 1 + c 1 + c n 2 1 + 2ω1 + 2ω where c i are the Chern classes of the tangent bundle of Q 1 Q 2 and ω = c 1 O P n1 Q1 Q 2. The top Chern class c n 2 is then the coefficient of ω n 2 in 1 + ω n+1 /1 + 2ω 2 ; equivalently, [ ] 1 + ω n+1 c n 2 = Res ω=0 ω n 1 1 + 2ω 2 dω [ ] [ ] 1 + ω n+1 1 + ω n+1 = Res ω= 1/2 ω n 1 1 + 2ω 2 dω Res ω= ω n 1 1 + 2ω 2 dω [ ] [ ] = 1n 1 + z n+1 1 + z n+1 Res z=0 8 z 2 dz + Res 1 z n 1 z=0 z 2 2 + z 2 dz = 1n n 4 + n 4 = { 0 if n odd n/2 if n even Hence { 0 if n odd χ = c n 2 = Q 1 Q 2 2n if n even { n 1 if n odd = b n 2 = n + 2 if n even 2

b Since we want to consider the case of n odd, let n = 2g + 1, so that b n 2 = b 2g 1 = 2g. Denote by P 2g+1 P 1 X π P 1 the family of quadrics given by the pencil in problem TP1; we have seen that it is the vanishing locus of the bihomogeneous polynomial n n n λ + µa i x 2 i = λ x 2 i + µ a i x 2 i i=0 i=0 The expression on the right hand side exhibits X as the blowup of P 2g+1 along the base locus of the pencil, B := Q 1 Q 2 ; in particular, since B is smooth, X is too. By the Lefschetz hyperplane theorem we know then that h p,q X = h p,q P 2g+1 P 1 for p+q 2g. Together with Poincaré duality, this gives all the Hodge numbers of X outside of the middle dimension p+q = 2g+1: the only nonzero ones are h 0,0 X = h 2g+1,2g+1 X = 1 and h p,p X = 2 for 1 p 2g. We can also find the Betti number b 2g+1 X from the topological Euler characteristic of X, which in turn can be calculated from the knowledge of the projection X π P 1. The general fiber of this map is a smooth quadric Q 2g in P 2g+1, whose Euler characteristic can be calculated as above to be χ Q 2g = 2g + 2. Using once more the Lefschetz hyperplane theorem and Poincaré duality we thus have the Betti numbers of Q 2g : b k Q 2g 2 if k = 2g = 1 if k even, 0 k 4g, k 2g The 2g + 2 singular elements of the pencil are cones over a nonsingular quadric Q 2g 1 in P 2g with vertex a point, hence isomorphic to the Thom space of a trivial real vector bundle of rank 2 over Q 2g 1, which in turn is isomorphic to Σ 2 Q 2g 1 +. Proceeding as with Q2g, we obtain b k Q 2g 1 = i=0 { 1 if k even, 0 k 4g 2 { b k Σ 2 Q 2g 1 1 if k even, 0 k 4g = + i.e., the topological Euler characteristic of the singular elements of the pencil is one less than that of the general ones. Since there are 2g + 2 of them, we arrive at χx = χp 1 χ Q 2g [ + 2g + 2 χ Σ 2 Q 2g 1 χ Q 2g] + = 22g + 2 2g + 2 = 2g + 2 Collecting all the previous results, we have b 2g+1 X = 2g and hence p+q=2g+1 hp,q X = 2g. 3

We now consider the Leray spectral sequences associated to the map X π P 1 and the sheaves Ω p X : E r,s 2 Ωp X = Hr P 1, R s π Ω p X Hr+s X, Ω p X Notice that, since dim P 1 = 1, these spectral sequences have only two columns, and they actually degenerate at the E 2 -step. Hence, for p, q 1, h p,q X = h q X, Ω p X = h0 P 1, R q p Ω p X + h1 P 1, R q 1 p Ω p X Moreover h 0,q X = h q X, O X = 0, the last equality coming from the long exact sequence in cohomology associated to the exact sequence of sheaves 0 O P 2g+1 P 1 2, 1 O P 2g+1 P 1 O X 0 We now investigate the sheaves R s π Ω p X for p > 0. Let U P1 the complement of the 2g + 2 points over which the singular fibers are located; then π 1 U = U Q 2g, so that R s π Ω p X U = H s U Q 2g, Ω p U Q 2g = a+b=s i+j=p = H 0 U, O U H a U, Ω i U H b Q 2g, Ω j Q 2g [H s Q 2g, Ω pq 2g H s Q 2g, Ω p 1 Q 2g ] From the Hodge numbers of Q 2g, we see that R s π Ω p X = 0 unless p = s or p = s + 1. For the middle dimension p + q = 2g + 1, we have h 0,2g+1 X = h 2g+1,0 X; if 1 p 2g, then h p,2g+1 p X = h 0 P 1, R 2g+1 p p Ω p X + h1 P 1, R 2g p p Ω p X The first term vanishes unless p = g + 1, while the second is nonzero only if p = g, that is, the only nonzero Hodge numbers in the middle dimension are h g,g+1 X and h g+1,g X, which have to be equal because of complex conjugation. In sum, 1 if p = q = 0 or p = q = 2g + 1 h p,q 2 if 1 p = q 2g X = g if p = g, q = g + 1 or p = g + 1, q = g We can finally compute the Hodge numbers of B: since X is the blowup of P 2g+1 along B, we have 1 if 0 p = q 2g 1 h p,q B = h p+1,q+1 X h p+1,q+1 P 2g+1 = g if p = g 1, q = g or p = g, q = g 1 4

TP2. a Let Q be the singular quadric hypersurface in P 4 given by the equation x 2 0 +x2 1 +x2 2 +x2 3 = 0. Calculate its divisor class group, its Picard group and its cohomology with coefficients in O and C. b Compute the Picard group of Spec O p,q, where p Q is the singular point. Use this to show that p is not a quotient singularity. c Show that Q contains a plane P through p. Prove that the blow-up Q of Q along P is smooth and answer the same questions. d Show that the blow-up of Q at p is a P 1 -bundle over P 1 P 1 and identify which one it is. a First of all, change coordinates in P 4 : y 0 = 1 2 x 0 + ix 1, y 1 = 1 2 x 0 ix 1, y 2 = 1 2 x 2 + ix 3, y 3 = 1 2 x 2 + ix 3, y 4 = x 4 Now, Q is the cone over X := V + y 0 y 1 y 2 y 3 P 3 with vertex the point p = [0 : 0 : 0 : 0 : 1]. The singular point is of codimension 3 in Q, so that ClQ = ClQ {p}. But Q {p} = X A 1, which yields ClQ = ClQ {p} = ClX A 1 = ClX = Z Z since X = P 1 P 1. Following the chain of isomorphisms, we find generators for ClQ: P 1 := V + y 1, y 2 Q P 2 := V + y 1, y 3 Q Neither of these Weil divisors is Cartier, for Q is normal and they are not locally principal at p. Indeed, m p,q /m 2 p,q = m p,p 4/m 2 p,p 4 is a vector space of dimension 4 with basis the classes of y 0, y 1, y 2, y 3 ; the image of the prime ideal associated to P 1 contains the classes of both y 1 and y 2, so it could not be generated by a single element, and similarly for P 2. However, P 1 P 2 = V + y 1, so that Z P 1 + P 2 CaClQ. Suppose there were another Weil divisor in CaClQ\Z P 1 + P 2. Then, by taking an appropriate linear combination, we would have kp 1 CaClQ for some k 1. To show that kp 1 is not locally principal for any such k, look at m k p,q m k+1 p,q = mk p,p + q/q 4 = m k+1 + q/q p,p 4 m k p,p 4 m k p,p 4 m k+1 p,p 4 + q = m k p,p 4 m k+1 p,p 4 + m k p,p 4 q where q O p,p 4 is the ideal generated by y 0 y 1 y 2 y 3. It is clear that this is a vector space with basis {y0y a 2y b 3 c a, b, c 0, a + b + c = k} {y1y a 2y b 3 c a, b, c 0, a + b + c = k} Again the image of the ideal associated to kp 1 is of dimension strictly greater than one, proving that CaClQ = Z P 1 + P 2. Finally, since Q is integral, we have PicQ = CaClQ = Z. The cohomology with coefficients in O can be easily deduced from the exact sequence 0 O P 4 2 O P 4 O Q 0 5

We obtain H 0 Q, O Q = C and H i Q, O Q = 0 for i > 0. Since Q {p} = X A 1, we can identify Q with the Thom space of a trivial real bundle of rank 2 over P 1 P 1, so that Q Σ 2 P 1 P 1 +. From this the Betti numbers of Q follow: b 0 = 1, b 1 = 0, b 2 = 1, b 3 = 0, b 4 = 2, b 5 = 0 and b 6 = 1. b First of all, observe that a prime divisor in Spec O p,q, i.e., a height one prime ideal of O p,q, corresponds to a prime divisor on Q that passes through p. Let ι : Spec O p,q Q be the canonical inclusion. If P is a prime divisor in Q, then define ι P := { ι 1 P if p P 0 if p P and extend linearly to a map ι : DivQ DivSpec O p,q. Moreover, if f KQ, then ι f = ι v P f P = v P f ι 1 P P prime P prime p P is the principal divisor associated to f considered as an element of KSpec O p,q = KQ. Hence ι descends to a map of divisor class groups, which we still denote ι. The surjectivity of the these maps is clear: if D = n P ι 1 P then ι D = D for D = P prime p P P prime p P n P P Since P 4 = V + y 4 Q DivQ does not pass trough the singular point, we have that ι y 1 /y 4 = ι P 1 + P 2 P 4 = ι 1 P 1 + ι 1 P 2 is a principal divisor in DivSpec O p,q. Furthermore, if f = k ι 1 P 1 then f O Q U for some open neighborhood U of p in Q, in contradiction with the fact that kp 1 is not locally principal at the singular point. In conclusion, ClSpec O p,q = Z P 1. We now study the divisor class group of a quotient singularity. Let G be a finite subgroup of SU3 acting on C 3 ; the C-algebra homomorphism C[x, y, z] G C[x, y, z] corresponds to the canonical quotient map π : C 3 C 3 /G. We can mimic the above construction to define a map π : DivC 3 /G DivC 3 which also descends to a homomorphism of divisor class groups: if P be a prime divisor in C 3 /G passing through the origin, then π P is a Weil divisor which is invariant under the action of G. Since ClC 3 = 0 C[x, y, z] is a UFD, there exists f KC 3 such that 6

f = π P. But then G f := g G g f is G-invariant and descends to a rational function on the quotient; hence G f = G P DivC 3 /G and ClC 3 /G is torsion. Reasoning as above, we can also show that the divisor class group of the local scheme at the singularity is a quotient of the latter group, hence also torsion. This proves that the singular point of Q is not a quotient singularity. c We have already seen that Q contains two planes through the singular point, namely P 1 and P 2. The blow-up Q of Q along P 1 can be constructed as the proper transform of Q with respect to the blow-up of P 4 along P 1. The latter can be constructed as follows: there is a surjection of O P 4[u, v] onto the blow-up algebra k 0 Ik, where I = y 1 O P 4 1 + y 2 O P 4 1 and the map takes u and v to y 1 and y 2, respectively, considered as elements of degree one; the kernel of this map is generated by the element uy 2 vy 1, so that Bl P1 P 4 := Proj I k = Proj O P 4[u, v]/uy 2 vy 1 k 0 = V + uy 2 vy 1 P 4 P 1 The total transform of Q is then V + y 0 y 1 y 2 y 3, uy 2 vy 1 P 4 P 1. Looking at the inverse image of D + y 0 Q P 4 under the blow-up map π we can differentiate the component along the exceptional divisor E = P 2 P 1 from the proper transform Q of Q: π 1 D + y 0 Q = V y 10 y 20 y 30, uy 20 vy 10 = V y 10 y 20 y 30, y 20 u vy 30 D + y 0 P 1 Thus, Q = V + y 0 y 1 y 2 y 3, uy 2 vy 1, uy 0 vy 3 P 4 P 1 The smoothness can be checked affine-locally. In order to calculate the cohomology of Q with coefficients in O, notice that E Q is a complete intersection in P 4 P 1, so that we have the exact sequence 0 O P 4 P 1 3, 1 O P 4 P 1 2, 0 O P 4 P 1 1, 1 O P 4 P 1 O E Q 0 The cohomology of P 4 P 1 with coefficients in O P 4 P1a, b follows immediately from that of P4 and P 1 and the Künneth formula. A short calculation yields H 0 E Q, O E Q = C and H i E Q, O E Q = 0. Similarly, E Q is the vanishing locus of uy 0 vy 3 in P 2 P 1 with coordinates [y 0 : y 3 : y 4 ] [u : v], so that 0 O P 2 P 1 1, 1 O P 2 P 1 O E Q 0 and H 0 E Q, O E Q = C and H i E Q, O E Q = 0. Finally E = P 2 P 1 gives H 0 E, O E = C and H i E, O E = 0. Plugging this information in the exact sequence we obtain H 0 Q, O Q = C and H i Q, O Q = 0. 0 O E Q O E O Q O E Q 0 7

Since P 4 P 1, Bl P1 P 4 and Q are all smooth, we have the following diagram of vector bundles on Q: 0 0 0 T Q T Q 0 0 T BlP1 P 4 Q T P 4 P 1 Q N BlP1 P 4 \P 4 P 1 Q 0 0 N Q\BlP1 P 4 N Q\P 4 P 1 N BlP1 P 4 \P 4 P 1 Q 0 0 0 0 We know N BlP1 P 4 \P 4 P 1 = O P 4 P 11, 1 Bl P1 P 4 and N Q\BlP1 P 4 = O P 4 P 12, 0 Q, so that N Q\P 4 P 1 = O P 4 P 12, 0 O P 4 P 11, 1 Q From the middle column of the diagram above, we obtain c T P 4 P 1 Q = c T Q c N Q\P 4 P 1 1 + ω 5 1 + η 2 = 1 + c 1 + c 2 + c 3 1 + 2ω1 + ω + η where c i are the Chern classes of the tangent bundle of Q and ω = c 1 OP 4 P 11, 0 Q, η = c 1 OP 4 P 10, 1 Q We calculate c 1 = 2ω + η, c 2 = ω2ω + 3η, c 3 = 3ω 2 η and χ = Q c 3 = 6. The Lefschetz hyperplane theorem yields the Betti numbers b 0 E Q = 1, b 1 E Q = 0 and b 2 E Q = 2. Moreover, we also know all of the Betti numbers of E and E Q. We will use a Mayer-Vietoris argument to compute the Betti numbers of Q. The following table contains all the information that we have so far. 8

i b i E Q b i E Q b i E Q 0 1 1 + b 0 1 1 0 0 + b 1 0 2 2 2 + b 2 2 3 x 0 + b 3 0 4 2 + b 2 1 5 0 + b 1 0 6 1 + b 0 0 Notice that we have also made use of Poincaré duality for Q. From the first two rows, it is immediate that b 0 = 1 and b 1 = 0. Moreover, from the third and fourth rows we have b 2 = 2 x+b 3 and x b 3. Equating the value of the Euler characteristic that we calculated before with the one obtained from the table, we arrive at the condition b 3 = 2x. The only possible solution is then x = 0, b 2 = 2 and b 3 = 0. More precisely, the Lefschetz hyperplane theorem gives H 2 E Q, Z = Z Z; since we also have H 2 E Q, Q = Z Z, it is clear from the table that H 2 Q, Z is also torsion-free. We then deduce from the exponential sequence that Pic Q = Z Z. Moreover, since Q is smooth, its divisor class group is isomorphic to its Picard group. d First consider the blow-up of C 4 at the origin: it can be described as the set {p, l C 4 P 3 : p l}, i.e., as the total space of the tautological line bundle O P 3 1 over P 3 : Bl 0 C 4 = Tot OP 3 1 := Spec Sym O P 31 The blow-up of P 4 at the origin is then a fiberwise compactification of the latter, hence a P 1 -bundle over P 3. Any such bundle is the projectivization of a rank two vector bundle E on P 3, which always splits as a sum of line bundles. To prove the latter fact, we may assume without loss of generality that h 0 E > 0: otherwise take a big enough twist, which can be undone at the end. If s : O P 3 E is a non-zero global section, the image of its dual s : E O P 3 is an ideal sheaf O P 3 D for some effective divisor D and its kernel L is locally free of rank one; dualizing we obtain a short exact sequence 0 O P 3D E L 0 Since Ext 1 L, O P 3D = H 1 P 3, LD = 0, the extension is split. Write then Bl 0 P 4 = PL1 L 2 := Proj SymL 1 L 2 π P 3 For 0 i 3, let f 1 1,i and f 1 2,i be local generators of L 1 and L 2, respectively, as O P 3-modules over the affine open D + z i P 3. We then have isomorphisms O P 3 D+ z i [u i, v i ] = SymL 1 L 2 D + z i 9

sending u i f 1,i SymL 1 L 2 D + z i v i f 2,i SymL 1 L 2 D + z i Suppose that the section of π given by the proper transform of the hyperplane at infinity V + y 4 is given by the canonical projection L 1 L 2 L 1. In the notation just introduced, this corresponds to the vanishing locus of the v i over each D + z i. The complement of this section is given locally by Spec O P 3 D+ z i [u i /v i ]. These pieces glue together to Spec SymL 1 L 2, so that L 1 L 2 = O P 31. Since PE = PE L 2, we conclude that Bl 0P 4 = PO P 3 1 O P 3. The blow-up of Q at the origin is the proper transform of Q under π, i.e., Bl 0 Q = PO P 1 P 1 1, 1 O P 1 P 1. 1 1 RD2. Analyze the plane curve C given by y 2 = fx = 10 i=1 x ii calculate its geometric and arithmetic genus, singular points,.... Let C be the projective closure of C, with equation Y 2 Z 53 10 i=1 X izi = 0. Its arithmetic genus follows from the degree-genus formula: p a C = 1 2 55 155 2 = 1431. The singular points of C are the solutions of the equations 0 = y 2 fx, 0 = x y 2 fx = f x, 0 = y 2 fx = 2y y These conditions are satisfied at the points m, 0 such that f has a multiple root x = m; this happens when m = 2,... 10. In an infinitesimal neighborhood of each of these points, we can redefine the x coordinate to put the equation in the form y 2 = x m. Resolving these singularities, we see that the normalization N of C has two points over each of the singular points for which m is even, and only one for those for which m is odd. The intersection of C with the hyperplane at infinity Z = 0 is a highly singular point. Instead of trying to resolve that singularity, we perform a clever change of coordinates in the affine plane, valid for x 0: we define z = x 1 and w = x 28 y; the equation of C then takes the form w 2 z 10 i=0 1 iz i = 0 Adding the point z = w = 0 to C compactifies it; notice, in particular, that the point added is nonsingular. In summary, N is a 2-to-1 cover of P 1 ramified over the points x = 1, 3, 5, 7, 9,. By the Riemann-Hurwitz formula, 2gN 2 = 2 2 + 6 = gn = 2 10

TP3. Classify all singular quadric hypersurfaces in P n. Describe the singularities, resolve them and describe the corresponding resolutions. Since the only invariant of a quadratic form on C n+1 is its rank, there are n + 1 isomorphism classes of quadric hypersurfaces in P n. A complete set of class representatives is given by Q k,n = V + x 2 0 + + x 2 k 1 Pn where k = 1,..., n + 1 is the rank of the associated quadratic form. It is clear that a quadric hypersurface is smooth if and only if its rank is maximal in this case, if k = n + 1. A singular quadric of rank 1 is a double hyperplane; in this case, all points are singular and a resolution is provided by that same hyperplane with its reduced scheme structure. If k = 2, we have the union of two hyperplanes intersecting transversely in a linear subvariety of dimension n 2, whose resolution consists of two disjoint copies of P n 1. For 3 k n, Q k,n is a cone over a smooth quadric hypersurface in V + x k,..., x n = P k 1 with vertex S := V + x 0,..., x k 1 = P n k. To perform a resolution of singularities, we blow up P n along S: Bl S P n = V + {xi u j x j u i } 0 i<j k 1 P n P k 1 TO DO: prove smoothness and describe these resolutions. RD3. Look at the stratification of the theta divisor of a curve C by singularity type, and define a stratification of the moduli space M g by this data. Work this out for g 6. TP4. Consider a generic pencil of plane curves of degree d. Show that its singular elements have a unique singular point, and that it is an ordinary double point. Count how many of them there are. 11