Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators

Similar documents
Firefly Synchronization. Morris Huang, Mark Kingsbury, Ben McInroe, Will Wagstaff

An analysis of how coupling parameters influence nonlinear oscillator synchronization

Synchronization and Phase Oscillators

Firefly Synchronization

Nonlinear systems, chaos and control in Engineering

University of Colorado. The Kuramoto Model. A presentation in partial satisfaction of the requirements for the degree of MSc in Applied Mathematics

Chimera states in networks of biological neurons and coupled damped pendulums

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325

Synchronization Transitions in Complex Networks

Phase Oscillators. and at r, Hence, the limit cycle at r = r is stable if and only if Λ (r ) < 0.

Problem Set Number 02, j/2.036j MIT (Fall 2018)

Phase Desynchronization in Pulse-Coupled Oscillator Networks: A New Algorithm and Approach

1. Synchronization Phenomena

Synchronization in delaycoupled bipartite networks

OTHER SYNCHRONIZATION EXAMPLES IN NATURE 1667 Christiaan Huygens: synchronization of pendulum clocks hanging on a wall networks of coupled Josephson j

Applicable Analysis and Discrete Mathematics available online at FRUSTRATED KURAMOTO MODEL GENERALISE EQUITABLE PARTITIONS

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

arxiv:nlin/ v1 [nlin.cd] 4 Oct 2005

The Time to Synchronization for N Coupled Metronomes

Oscillator synchronization in complex networks with non-uniform time delays

Entrainment of coupled oscillators on regular networks by pacemakers

Phase Synchronization

Synchronization of metronomes. Luis Jover, 1 Bradford Taylor, 1 Jeff Tithof, 1 and Vlad Levenfeld 2 USA USA

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

PHASE-LOCKED SOLUTIONS IN A HUB CONNECTED OSCILLATOR RING NETWORK

Learning Cycle Linear Hybrid Automata for Excitable Cells

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Model of Motor Neural Circuit of C. elegans

Problem Set Number 2, j/2.036j MIT (Fall 2014)

Nonlinear Dynamics: Synchronisation

Physics of the rhythmic applause

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

arxiv: v1 [nlin.ao] 21 Feb 2018

One Dimensional Dynamical Systems

Models Involving Interactions between Predator and Prey Populations

α-kuramoto partitions: graph partitions from the frustrated Kuramoto model generalise equitable partitions

The Kuramoto Model. Gerald Cooray. U.U.D.M. Project Report 2008:23. Department of Mathematics Uppsala University

Hysteretic Transitions in the Kuramoto Model with Inertia

2 One-dimensional models in discrete time

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

Nonlinear dynamics & chaos BECS

Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17)

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8.1 Bifurcations of Equilibria

arxiv:cond-mat/ v1 7 May 1996

Binary Compressive Sensing via Analog. Fountain Coding

Spontaneous Synchronization in Complex Networks

Lecture 4: Feed Forward Neural Networks

arxiv: v1 [q-fin.st] 31 Oct 2011

Chapter 2 Simplicity in the Universe of Cellular Automata

arxiv: v1 [physics.class-ph] 5 Jan 2012

Synchronization in Quotient Network Based on Symmetry

Data Mining Part 5. Prediction

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

A STUDY OF PARTIAL DERIVATIVES AND ITS GEOMETRIC INTERPRETATION AND THEIR APPLICATIONS

Majid Sodagar, 1 Patrick Chang, 1 Edward Coyler, 1 and John Parke 1 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

ME 680- Spring Geometrical Analysis of 1-D Dynamical Systems

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

C. Project description (max. 10 pages)

P321(b), Assignement 1

DYNAMICS OF THREE COUPLED VAN DER POL OSCILLATORS WITH APPLICATION TO CIRCADIAN RHYTHMS

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Deterministic Chaos Lab

Proceedings of Neural, Parallel, and Scientific Computations 4 (2010) xx-xx PHASE OSCILLATOR NETWORK WITH PIECEWISE-LINEAR DYNAMICS

USING COUPLED OSCILLATORS TO MODEL THE SINO-ATRIAL NODE IN THE HEART

AN INFORMATION THEORY APPROACH TO WIRELESS SENSOR NETWORK DESIGN

PULSE-COUPLED networks (PCNs) of integrate-and-fire

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

B5.6 Nonlinear Systems

arxiv: v1 [math.oc] 28 Mar 2013

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Dynamical modelling of systems of coupled oscillators

arxiv: v3 [nlin.cd] 26 Oct 2015

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps

Detecting Synchronisation of Biological Oscillators by Model Checking

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion

Introduction to Population Dynamics

Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior

Synchronization of Weakly Coupled Oscillators: Coupling, Delay and Topology

Math 273 (51) - Final

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Chimera State Realization in Chaotic Systems. The Role of Hyperbolicity

16 Period doubling route to chaos

Solution to Homework #4 Roy Malka

Bifurcations and global stability of synchronized stationary states in the Kuramoto model for oscillator populations

Multi-Robotic Systems

18.6 Regression and Classification with Linear Models

Physics 202 Laboratory 3. Root-Finding 1. Laboratory 3. Physics 202 Laboratory

Routing. Topics: 6.976/ESD.937 1

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

Lyapunov functions on nonlinear spaces S 1 R R + V =(1 cos ) Constructing Lyapunov functions: a personal journey

Survey of Synchronization Part I: Kuramoto Oscillators

Transcription:

Saturation of Information Exchange in Locally Connected Pulse-Coupled Oscillators Will Wagstaff School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated: 13 December 2012) Firefly synchronization is a well-studied phenomena in nature that amends itself to models based on coupled oscillators. While many of these models have been mathematically proven to synchronize in the two oscillator case, and even the globally coupled case, it is not well understood whether groups of coupled oscillators synchronize if the topological connections between them are changed from global to local. In terms of fireflies, the fact that many fireflies remain grouped in trees or around bodies of water may be necessitated given the actual dynamics by which fireflies alter their internal frequencies. Our experimental results confirm this hypothesis by highlighting the ability of coupled oscillators to become saturated with information. By this, we mean that after a particular threshold of connections between fireflies, any additional connections do not reduce the time to synchronization. For fireflies, this means that the grouping behavior may be beneficial up to a critical point after which additional fireflies no longer aid in synchronization. I. INTRODUCTION Synchronization in groups of fireflies plays a major role in reproduction, recognition, and competition 2. In reproduction, this communication regime consists of male fireflies flashing at a natural frequency with females responding accordingly. Because the response of the female requires coherency in the firings of the males, the male fireflies have developed methods of altering their internal frequency leading to synchronized flashing. 1 To explain this phenomenon, researchers have focused on the dynamics of coupled oscillators as a model for this synchronization behavior 4. In this paradigm, two entities influence each other s dynamics through a mutual exchange of information. For example, fireflies communicate their phase positions and frequencies with each flash. Implicit to the biology is the limitation that any firefly hoping to synchronize must either wait for or estimate the phase information of other fireflies. Therefore, any model

of synchronization must account for these biological constraints by incorporating discrete forms of communication between the oscillators. A number of models have been developed to account for this synchronization phenomenon and include such examples as the Kuramoto model for chemical oscillators 1 along with Peskin s model for self-synchronization of cardiac pacemaker cells 5. Both of these examples have been mathematically proven to synchronize in the two oscillator case, and have been experimentally shown to synchronize in the globally coupled case; however, it is not well understood whether groups of coupled oscillators will still synchronize if the topological connections between them are changed from global to local. One particularly overlooked component of firefly synchronization is the topology of firefly groups in trees or around bodies of water 3. While this seems necessary given the firefly s need to physically see its neighbors in order to synchronize, this grouping behavior may actually be necessitated by the dynamics by which fireflies alter their internal frequencies. For example, suppose one group of fireflies is on one side of a tree, another group is on the opposing side, and both are trying to communicate with one female in between. Because these groups are more likely to be unsynchronized, they are unlikely to warrant a response from the female given the lack of synchronization. Thus, it makes reproductive sense for these two groups to communicate with one another to some degree. In this paper, we hope to investigate the extent to which groups of fireflies communicate with one another. We hypothesize that the ability of a firefly to synchronize quickly and successfully is directly proportional to the number of other fireflies that it can see. In Section 2, we develop a new model of biological oscillators that leads to synchronization in the two oscillator case. In Section 3, we design an experiment to test the ability of groups of fireflies to synchronize with different radial sight distances. In Section 4, we analyze the data obtained from the experiment, and in Section 5, we conclude with future studies. II. KURAMOTO MODEL We decided to use the Kuramoto model as a basis from which to investigate the synchronization of biological oscillators due to its simplicity. It makes no assumptions about the computational capacities of the firefly other than the ability of the firefly to recognize the strength of light that is emitted from 2

its neighbors. The Kuramoto model can be described by the following equation: dθ i dt = ω t + K N N sin(θ j θ i ) j=1 Here, θ is the phase of the oscillator, K is the coupling constant, and N is the number of oscillators. One problem with this model is that it assumes that the oscillators know the instantaneous phase of all other oscillators for all time. Therefore, we propose an updated form of the model that incorporates the biological constraints of discrete communication described above: dθ i dt = ω t + K N j fired sin(θ j θ i ) monotonically increasing, and concave down, i.e. f > 0, f < 0 (v) f is invertible such that g = f 1, where g is monotonically increasing and concave up, i.e. g > 0 and g > 0 (vi) When the state of the oscillator reaches the end of its interval, 2π or 1.0 when normalized, it is reset to 0 and perturbs the other oscillator by an amount, ɛ, s.t. ɛ R, ɛ > 0. Figure 1 details the listed criteria. The internal state of the system, x, represents the nonlinear internal functioning of the oscillator. In fireflies, this would correspond to the nonlinear firings of the neurons. We can therefore state the following theorem 4 : As an explanation as to why biologically realizable models, such as the updated Kuramoto equation, lead to synchronization, Strogatz 4 proposed the following set of criteria that guarantees two coupled oscillators will always synchronize: (i) dφ dt = 1 models the change of phase of T the oscillator (ii) φ = 0 when the oscillator is at its lowest state x = 0 (iii) φ = 2π when the oscillator reaches threshold at x = 2π (iv) x = f(φ) maps the phase of the oscillator to its internal state variable x. f is smooth, FIG. 1. State variable, x, as a function of phase, φ. Note the axes have been normalized by dividing by 2π. 4 3

Theorem 1: Any two oscillators that satisfy conditions (i) through (vi) will always become synchronized. While this Theorem provides a standard criteria that guarantees synchronization, it is by no means all encompassing as it does not account for periodic perturbations, ɛ, or linear phase curves, f, that accompany the updated Kuramoto model. We, therefore, propose the following additional criteria: Figure 2, which is the case where f is a linear function, and ɛ is a periodic perturbation that depends on the position of the oscillators in phase space. (i) dφ = ω models the change of phase dt of the oscillator (ii) φ = 0 when the oscillator is at its lowest state x = 0 (iii) φ = 2π when the oscillator reaches threshold at x = 2π (iv) x = f(φ) maps the phase of the oscillator to its internal state variable x (v) f is invertible such that g = f 1 (vi) g = f such that g and f are the identity functions, g(x) = f(φ) = Id(x) = Id(φ), which implies that x = φ (vii) When the state of the oscillator A reaches the end of its interval, 2π, A is reset to 0 and perturbs the other oscillator, B, by an amount, ɛ = sin(φ) (viii) Oscillators A and B have initial phases that differ by φ A φ B π Therefore, we have the new scenario in FIG. 2. Oscillators A and B move along a linear phase curve, and are perturbed by an ɛ that depends on their position in phase space. It helps to think of oscillators A and B moving around the unit circle (Figure 4). Theorem 2: Any two oscillators that satisfy conditions (i) through (viii) will always become synchronized. 4

FIG. 3. Oscillators A and B move around the unit circle with frequency ω. A. Proof To prove that this scenario leads to synchronization, we need to define a return map R(φ) for the phase of B immediately after the next firing of A. Take two oscillators A and B initially at position (0, φ), such that B is about to fire (Figure 3). After a time 2π φ, B fires (Figure 4), at which point B returns to 0 and A is at a point, 2π φ + sin(φ), where sin(φ) is the perturbation made upon A by B s firing. Now we define the firing map h : φ φ by: h(φ) = 2π φ + sin(φ) Therefore, the new positions of A and B are: (φ A, φ B ) = (h(φ), 0) We assume 0 < h(φ) < 2π, otherwise the fireflies will have synchronized (thus completing the proof). This implies φ : (0, 2π) FIG. 4. In the top image, B fires, and in the bottom image, A is perturbed by ɛ. after A fires and is reset to 0, the positions of A and B are found by iterating the firing map once more giving: (φ A, φ B ) = (0, h(h(φ))) We can therefore define the return map as: R(φ) = h(h(φ)) = φ sin(φ) sin(φ sin(φ)) To investigate the stability of the fixed map, we must calculate its fixed points. We note that that fixed points of h are also fixed points of R. Therefore, R has fixed points when: h(φ) = φ = 2π φ + sin(φ) φ = 0, π Due to the symmetry of the oscillators, Now we can investigate the stability of 5

the fixed points by looking at the derivative of the return map: R (φ) = (cos(φ) 1)(cos(φ sin(φ)) 1) Plugging in the fixed points we find: R (0) = 0 < 1 (Stable) R (π) = 4 > 1 (Unstable) Therefore, the two coupled oscillators always synchronize so long as their phase difference does not differ by exactly π. In this case, the oscillators remained entrained and differ in phase by π for all time. The stability of the system is presented in Figure 5. firing map becomes: h(φ) = 2π φ + K sin(φ) And our return map becomes: R(θ) = K sin(φ) K sin(φ K sin(φ)) + φ Like before, we need to calculate the fixed points of the system by letting R(φ) = φ, which is equivalent to: sin(φ) + sin(φ K sin(φ)) = 0 sin φ = 2φ K C. Bifurcation Analysis This firing map has fixed points φ = 0, π for all time; however, by graphing the 2φ bifurcation diagram (K = sin(φ) flipped across the line y = x) we see some interesting behavior (Figure 6). FIG. 5. Stability diagram for the return map R(φ). B. Additional Conditions Suppose instead that ɛ = K sin(φ) where K R. We take K 0 since K sin(φ) = K sin( φ). This corresponds to a scaling of the perturbation made by the firing oscillator on the non firing oscillator. In this case, the FIG. 6. Bifurcation diagram for varying values of K. 6

We first take the derivative of R(φ) at φ = 0 and at φ = π: R (0) = (K 1) 2 R (π) = (K + 1) 2 We immediately notice that for K > 0, R (π) > 1; for K > 2, R (0) > 1; and for 0 < K 2, R (0) < 1. This means that for 0 < K 2, 0 is a stable node, and π is an unstable node; however, when K > 2, 0 swaps to an unstable node. Therefore, at K = 2, the system undergoes a supercritical pitchfork bifurcation leading to the birth of two new stable nodes (Figure 7). FIG. 8. Graph of R(φ) = φ for K = 1.9 (left) and K = 2.3 (right). synchronized if they begin synchronized; however, it is more likely they will become entrained at the new stable fixed points. FIG. 7. Birth of two new stables nodes in a supercritical pitchfork bifurcation. We can see this clearly in graphs of R(φ) = φ for increasing values of K (Figure 8). The two new stable nodes are born from the node at 0 and move towards the node at π becoming arbitrarily close to π, π as K. Therefore, synchronization will occur when 0 < K 2; however, when K > 2, it is possible for the oscillators to become It is important to note that Theorem 2 justifies using the Kuramoto model in the biologically realistic case in which coupled oscillators perturb each other in discrete time. We can additionally focus on altering the coupling topologies without worry that the model itself is causing a lack of synchronization. Furthermore, the K values used in the experiments never exceed this bifurcation level. 7

III. EXPERIMENT To investigate the effect of firefly couplings on time and ability to synchronize, we designed a physical setup using a camera, an LED board, and Matlab (Figure 9). The camera takes images of the board at 30 FPS, and sends the data to Matlab. Matlab uses blob detection to determine the locations and statuses of the LEDs - whether on or off. Once the ON LEDs locations are determined, the phases for all the fireflies that didn t fire are updated using the following equation: FIG. 9. The physical setup used during the experiment. dθ i dt = ω t + K N j fired A i,j sin(θ j θ i ) Here, A i,j is the coupling matrix such that A i,j = 1 if there exists and connection between firefly i and firefly j. In physical terms, if firefly i can see firefly j, then A i,j = 1, otherwise A i,j = 0. The LED board is an 6x8 grid with 48 fireflies. We adjust the line of sights for each firefly by altering the connection matrix. For example, Figure 10 details a line of sight radius of 1; therefore, each firefly can only see its four neighbors in each of the cardinal directions. Figure 11 details a line of sight radius of 2, which corresponds to a firefly seeing all 8 of its adjacent neighbors. FIG. 10. The LED grid used in the experiment with radius 1. For all experiments, we assume that the board is on a torus; that is, fireflies across the top row can see fireflies on the bottom, fireflies on the left can see fireflies on the right, and vice versa. This constraint avoids the cases when oscillations bunch up around the corners; these scenarios lead to synchronization times that are highly dependent on start conditions. 8

TABLE I. Values used in experiments. Matrix, A Coupling Strengths R = 1, c = 4 K = 1 R = 2, c = 8 K = 2 R = 5, c = 12 K = 5 R = 3, c = 20 K = 7 R = 13, c = 27 K = 10 R = 4, c = 33 K = 15 FIG. 11. The LED grid used in the experiment with radius 2. R = 20, c = 40 K = 20 R = 5, c = 46 K = 25 R = 6, c = 47 K = 30 IV. RESULTS AND DISCUSSION All the experiments were performed in the following manner: the radius is selected and fixed, while the coupling constant K is varied. At each start, the phases of all 48 fireflies are uniformly distributed around the unit circle. Then, the model is run for 3000 iterations, where each iteration corresponds to a single θ update for every firefly. A single iteration is proportional to the time constant, τ. We performed this experiment 10 times for each K - radius pair given in Table 1. We can immediately see from Figure 12 that the time to convergence depends heavily on the radius and number of connections. Here, the radius of 2 converges after 3000 iterations (blue), while the radius of 1 has not yet converged. FIG. 12. Firing patterns of fireflies of radiuses 2 and 1. When we fix the coupling constant at 2 and vary the radii, we see the behavior in Figure 13. Immediately noticeable is the fact that the number of connections is correlated with the time to convergence up to a limiting point. Also, connections of radius 1 (blue) do not show any trend towards convergence during the 3000 iterations tested. Convergence 9

does not start occurring until the radius 2 is used (green). Furthermore, after a radius 4, the fireflies synchronize after approximately the same number of iterations. FIG. 13. Time to synchronization for different radii. If we look specifically at the random start conditions for K-radii pairs, we see that the variance of time to synchronization decreases with stronger coupling constants (radii fixed). Furthermore, we see that the time to synchronization in all radii - K pairs is strongly correlated with the mean of that pair (Figure 14). This implies that the coupling constant reduces the dependence of synchronization time on initial conditions. FIG. 14. Variance of time to synchronization for different radii. with increased connections. This mean that the firefly reaches a point where it becomes saturated with information, and gains no additional benefit from additional connections. When we fit curves to time to synchronization time vs number of connections (corresponding to radii), we find that the data is approximated by a power series (Figure 15). Again, this highlights the fact that synchronization times become relatively stable even FIG. 15. Power series approximation of synchronization time vs connection numbers. We see similar trends when looking at 10

the time to synchronization and coupling strength; however, this data is better approximated by an exponential (Figure 16). Again, time to synchronization reaches a saturation point at which additional connections and increased coupling constants have no effect on time to synchronization. V. CONCLUSION We initially hypothesized that fireflies group up around common environmental hotspots in order to improve their ability to communicate phase information. Our experimental results confirm this hypothesis by highlighting the ability of coupled oscillators to synchronize more quickly with more information; however, after a critical point, the fireflies become saturated with information. By this, we mean that after a particular threshold of connections between fireflies, any additional connections do not reduce the time to synchronization. FIG. 16. Exponential approximation of synchronization time vs coupling strength. If we combine all of this information into an approximation of the synchronization time, we find the following equation: τ = 18800 c e K 0.67 1000 (1.3c+42.5) where c is the number of connections, and K is the coupling constant. While this is a rough approximation of the time constant, it does incorporate the saturation phenomena found in the data. For fireflies, this means that the grouping behavior may be beneficial up to a critical point after which additional fireflies no longer aid in synchronization.; therefore, we hypothesize that fireflies receiving limited amounts of phase information will seek out other groups of fireflies in order improve its ability to synchronize. We hope to investigate this in future work. VI. ACKNOWLEDGEMENTS Finally, we would like to thank Professor Goldman, Nick Gravish, and other members of the CRAB lab for helping us learn the material, aiding us with experiment preparation, 11

and offering us much needed advice. REFERENCES 1 J A Acebrón, L L Bonilla, CJP Vicente, and F Ritort. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern..., 2005. 2 GMR Ávila, J L Deneubourg, and J L Guisset. Firefly courtship as the basis of the synchronization-response principle. EPL (Europhysics..., 2011. 3 J B Buck. Synchronous rhythmic flashing of fireflies. The Quarterly Review of Biology, 1938. 4 Renato E Mirollo and Steven H Strogatz. Synchronization of Pulse-Coupled Biological Oscillators. SIAM Journal on Applied Mathematics, 50(6):1645 1662, December 1990. 5 C S Peskin. Mathematical aspects of heart physiology. 1975. 12