Variable Exponents Spaces and Their Applications to Fluid Dynamics

Similar documents
Variable Lebesgue Spaces

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s

Besov-type spaces with variable smoothness and integrability

Function spaces with variable exponents

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

The p(x)-laplacian and applications

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

Fractional Sobolev spaces with variable exponents and fractional p(x)-laplacians

Mathematical analysis of the stationary Navier-Stokes equations

Due Giorni di Algebra Lineare Numerica (2GALN) Febbraio 2016, Como. Iterative regularization in variable exponent Lebesgue spaces

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

TRACES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS AND FRACTIONAL P (X)-LAPLACIANS. 1. Introduction

Research Article Nontrivial Solution for a Nonlocal Elliptic Transmission Problem in Variable Exponent Sobolev Spaces

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

Decompositions of variable Lebesgue norms by ODE techniques

Research Article Function Spaces with a Random Variable Exponent

Research Article Existence and Localization Results for p x -Laplacian via Topological Methods

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES

The variable exponent BV-Sobolev capacity

Spaces of Variable Integrability

RENORMALIZED SOLUTIONS OF STEFAN DEGENERATE ELLIPTIC NONLINEAR PROBLEMS WITH VARIABLE EXPONENT

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

VARIABLE EXPONENT TRACE SPACES

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

On the p-laplacian and p-fluids

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1

Renormalized solutions for nonlinear partial differential equations with variable exponents and L 1 -data

EXISTENCE AND UNIQUENESS OF p(x)-harmonic FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x)

It follows from the above inequalities that for c C 1

Partial Differential Equations, 2nd Edition, L.C.Evans The Calculus of Variations

Wavelets and modular inequalities in variable L p spaces

NAVIER-STOKES EQUATIONS IN THE HALF-SPACE IN VARIABLE EXPONENT SPACES OF CLIFFORD-VALUED FUNCTIONS

Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces

Continuity of weakly monotone Sobolev functions of variable exponent

PERIODIC SOLUTIONS FOR A KIND OF LIÉNARD-TYPE p(t)-laplacian EQUATION. R. Ayazoglu (Mashiyev), I. Ekincioglu, G. Alisoy

On the discrete boundary value problem for anisotropic equation

Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 5 Sobolev Spaces

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Harnack Inequality and Continuity of Solutions for Quasilinear Elliptic Equations in Sobolev Spaces with Variable Exponent

EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS FOR THE p(x)-laplacian

The maximal operator in generalized Orlicz spaces

Lecture No 1 Introduction to Diffusion equations The heat equat

Sobolev Spaces 27 PART II. Review of Sobolev Spaces

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

Overview of differential equations with non-standard growth

On some nonlinear parabolic equation involving variable exponents

BASES FROM EXPONENTS IN LEBESGUE SPACES OF FUNCTIONS WITH VARIABLE SUMMABILITY EXPONENT

The incompressible Navier-Stokes equations in vacuum

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

l(y j ) = 0 for all y j (1)

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Convergence of monotone operators with respect to measures

CMAT Centro de Matemática da Universidade do Minho

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Three critical solutions for variational - hemivariational inequalities involving p(x)-kirchhoff type equation

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( )

GOOD RADON MEASURE FOR ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT

NONLINEAR PARABOLIC PROBLEMS WITH VARIABLE EXPONENT AND L 1 -DATA

STEKLOV PROBLEMS INVOLVING THE p(x)-laplacian

Convergence of the MAC scheme for incompressible flows

Existence of Weak Solutions to a Class of Non-Newtonian Flows

Math. Res. Lett. 16 (2009), no. 2, c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES

THE STOKES SYSTEM R.E. SHOWALTER

Existence of solutions for a boundary problem involving p(x)-biharmonic operator. Key Words: p(x)-biharmonic, Neumann problem, variational methods.

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University

One-sided operators in grand variable exponent Lebesgue spaces

It follows from the above inequalities that for c C 1

1. Introduction. SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES 1 AND n. Petteri Harjulehto and Peter Hästö.

A Concise Course on Stochastic Partial Differential Equations

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

Eigenvalue Problems for Some Elliptic Partial Differential Operators

Weighted Sobolev Spaces and Degenerate Elliptic Equations. Key Words: Degenerate elliptic equations, weighted Sobolev spaces.

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

RELATIONSHIP BETWEEN SOLUTIONS TO A QUASILINEAR ELLIPTIC EQUATION IN ORLICZ SPACES

Journal of Inequalities in Pure and Applied Mathematics

A metric space X is a non-empty set endowed with a metric ρ (x, y):

arxiv: v1 [math.cv] 3 Sep 2017

Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and L 1 -Data

Appendix A Functional Analysis

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

LARGE TIME BEHAVIOR FOR p(x)-laplacian EQUATIONS WITH IRREGULAR DATA

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations

Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents

Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces

STRONG SOLUTIONS FOR GENERALIZED NEWTONIAN FLUIDS

The Navier-Stokes problem in velocity-pressure formulation :convergence and Optimal Control

BIHARMONIC WAVE MAPS INTO SPHERES

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

Lecture Note III: Least-Squares Method

arxiv: v1 [math.ap] 26 Apr 2012 HERMENEGILDO BORGES DE OLIVEIRA,

New Discretizations of Turbulent Flow Problems

Transcription:

Variable Exponents Spaces and Their Applications to Fluid Dynamics Martin Rapp TU Darmstadt November 7, 213 Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14

Overview 1 Variable Exponent Spaces 2 Applications to Fluid Dynamics Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 2 / 14

Variable Exponent Lebesgue Spaces p : Ω R d [1, ] measurable is called exponent. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 3 / 14

Variable Exponent Lebesgue Spaces p : Ω R d [1, ] measurable is called exponent. p + := ess sup x Ω p(x) p := ess inf x Ω p(x) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 3 / 14

Variable Exponent Lebesgue Spaces p : Ω R d [1, ] measurable is called exponent. p + := ess sup x Ω p(x) p := ess inf x Ω p(x) For measurable f define the modular ϱ p( ) (f ) := f (x) p(x) χ {p } dx + f χ {p= } Ω Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 3 / 14

Variable Exponent Lebesgue Spaces p : Ω R d [1, ] measurable is called exponent. p + := ess sup x Ω p(x) p := ess inf x Ω p(x) For measurable f define the modular ϱ p( ) (f ) := f (x) p(x) χ {p } dx + f χ {p= } Ω L p( ) (Ω) := {f : ϱ p( ) (f ) < } with norm ( ) f f p( ) := inf{λ > : ϱ p( ) 1} λ Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 3 / 14

Variable Exponent Sobolev Spaces Define the modular ϱ k,p( ) (f ) := α k ϱ p( ) ( α f ) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 4 / 14

Variable Exponent Sobolev Spaces Define the modular ϱ k,p( ) (f ) := α k ϱ p( ) ( α f ) W k,p( ) (Ω) := {f : ϱ k,p( ) (f ) < } with norm ( ) f f k,p( ) := inf{λ > : ϱ k,p( ) 1} λ Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 4 / 14

Variable Exponent Sobolev Spaces Define the modular ϱ k,p( ) (f ) := α k ϱ p( ) ( α f ) W k,p( ) (Ω) := {f : ϱ k,p( ) (f ) < } with norm ( ) f f k,p( ) := inf{λ > : ϱ k,p( ) 1} λ This norm is equivalent to k m= m f p( ) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 4 / 14

Variable Exponent Sobolev Spaces Define the modular ϱ k,p( ) (f ) := α k ϱ p( ) ( α f ) W k,p( ) (Ω) := {f : ϱ k,p( ) (f ) < } with norm ( ) f f k,p( ) := inf{λ > : ϱ k,p( ) 1} λ This norm is equivalent to k m= m f p( ) Let W k,p( ) (Ω) be the closure of C (Ω) w.r.t. k,p( ) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 4 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable 1 < p p + < reflexive Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable 1 < p p + < reflexive Further Properties of the Lebesgue Spaces Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable 1 < p p + < reflexive Further Properties of the Lebesgue Spaces Hölder inequality Ω f (x)g(x) dx 2 f p( ) g p ( ), where 1 p + 1 p = 1 a.e. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable 1 < p p + < reflexive Further Properties of the Lebesgue Spaces Hölder inequality Ω f (x)g(x) dx 2 f p( ) g p ( ), where 1 p + 1 p ( L p( ) (Ω) ) = L p ( ) (Ω) = 1 a.e. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

Properties of Variable Exponent Spaces Basic Properties of L p( ) (Ω), W k,p( ) (Ω), W k,p( ) (Ω) Banach spaces p + < separable 1 < p p + < reflexive Further Properties of the Lebesgue Spaces Hölder inequality Ω f (x)g(x) dx 2 f p( ) g p ( ), where 1 p + 1 p ( L p( ) (Ω) ) = L p ( ) (Ω) = 1 a.e. If Ω is bounded and p q a.e., then L p( ) (Ω) L q( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 5 / 14

log-hölder Continuity An exponent p on a bounded domain Ω is called log-hölder continuous if p(x) p(y) c log(e + 1 x y ) x, y Ω, x y. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 6 / 14

log-hölder Continuity An exponent p on a bounded domain Ω is called log-hölder continuous if p(x) p(y) c log(e + 1 x y ) x, y Ω, x y. For d 2 and an exponent p define the Sobolev-conjugate exponent p (x) := { dp(x) d p(x) : p(x) < d : p(x) d. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 6 / 14

p log-hölder Continuity If Ω is bounded and p is log-hölder continuous, then the following theorems hold: Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 7 / 14

p log-hölder Continuity If Ω is bounded and p is log-hölder continuous, then the following theorems hold: Poincaré: u p( ) c u p( ) for all u W 1,p( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 7 / 14

p log-hölder Continuity If Ω is bounded and p is log-hölder continuous, then the following theorems hold: Poincaré: u p( ) c u p( ) for all u W 1,p( ) (Ω) p + < d W 1,p( ) (Ω) L p ( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 7 / 14

p log-hölder Continuity If Ω is bounded and p is log-hölder continuous, then the following theorems hold: Poincaré: u p( ) c u p( ) for all u W 1,p( ) (Ω) p + < d W 1,p( ) (Ω) L p ( ) (Ω) p + < d W 1,p( ) (Ω) L p ( ) ɛ (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 7 / 14

From now on we assume Ω R d bounded domain p is log-hölder continuous f L p ( ) (Ω) or f L p ( ) (Ω) d δ Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 8 / 14

Navier-Stokes equations Navier-Stokes equations div (δ + Du ) p( ) 2 Du + div (u u) + π = f in Ω div u = in Ω u = on Ω Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 9 / 14

Navier-Stokes equations Navier-Stokes equations div (δ + Du ) p( ) 2 Du + div (u u) + π = f in Ω div u = in Ω u = on Ω Solving Methods Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 9 / 14

Navier-Stokes equations Navier-Stokes equations div (δ + Du ) p( ) 2 Du + div (u u) + π = f in Ω div u = in Ω u = on Ω Solving Methods Classical theory of monotone operators: Existence of weak solution u W 1,p( ) (Ω) d for p > 3d d+2. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 9 / 14

Navier-Stokes equations Navier-Stokes equations div (δ + Du ) p( ) 2 Du + div (u u) + π = f in Ω div u = in Ω u = on Ω Solving Methods Classical theory of monotone operators: Existence of weak solution u W 1,p( ) (Ω) d for p > 3d d+2. Method of Lipschitz-Truncations: Existence of weak solution u W 1,p( ) (Ω) d for p > 2d d+2. (Diening, Málek, Steinhauer 28 and Diening, Růžička 21) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 9 / 14

convenction-diffusion equations convection-diffusion equations div (δ + u ) p( ) 2 u + a u = f in Ω u = on Ω where a L r( ) (Ω) with div a = is given. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14

convenction-diffusion equations convection-diffusion equations div (δ + u ) p( ) 2 u + a u = f in Ω u = on Ω where a L r( ) (Ω) with div a = is given. Theorem For 1 < p p + < d or d < p p + <. Let a Lσ r( ) (Ω) d, where r is continuous and r > (p ) a.e. or r = 1 respectively. Then there is a weak solution u W 1,p( ) (Ω) of the equation. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14

Sketch of the Proof Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 11 / 14

Sketch of the Proof Solve by classical theory of monotone operators for every n N (δ + u n ) p( ) 2 u n ϕ dx u n a n ϕ dx Ω Ω + 1 u n q 2 u n ϕ dx = (f, ϕ) n Ω in W 1,p( ) (Ω) L q (Ω) where the a n are smooth divergence free functions with a n a in L r( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 11 / 14

Sketch of the Proof Solve by classical theory of monotone operators for every n N (δ + u n ) p( ) 2 u n ϕ dx u n a n ϕ dx Ω Ω + 1 u n q 2 u n ϕ dx = (f, ϕ) n Ω in W 1,p( ) (Ω) L q (Ω) where the a n are smooth divergence free functions with a n a in L r( ) (Ω) Get a sequence u n W 1,p( ) (Ω) L q (Ω) which is bounded in W 1,p( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 11 / 14

Sketch of the Proof Solve by classical theory of monotone operators for every n N (δ + u n ) p( ) 2 u n ϕ dx u n a n ϕ dx Ω Ω + 1 u n q 2 u n ϕ dx = (f, ϕ) n Ω in W 1,p( ) (Ω) L q (Ω) where the a n are smooth divergence free functions with a n a in L r( ) (Ω) Get a sequence u n W 1,p( ) (Ω) L q (Ω) which is bounded in W 1,p( ) (Ω) There is a weakly convergent subsequence: u n u in W 1,p( ) (Ω) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 11 / 14

Sketch of the Proof Solve by classical theory of monotone operators for every n N (δ + u n ) p( ) 2 u n ϕ dx u n a n ϕ dx Ω Ω + 1 u n q 2 u n ϕ dx = (f, ϕ) n Ω in W 1,p( ) (Ω) L q (Ω) where the a n are smooth divergence free functions with a n a in L r( ) (Ω) Get a sequence u n W 1,p( ) (Ω) L q (Ω) which is bounded in W 1,p( ) (Ω) There is a weakly convergent subsequence: u n u in W 1,p( ) (Ω) For limit in nonlinear p( )-Laplacian use method of Lipschitz-Truncations Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 11 / 14

Sketch of the Proof u solves then (δ + u) p( ) 2 u ϕ dx Ω for all ϕ W 1, (Ω) Ω ua n ϕ dx = (f, ϕ) Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 12 / 14

References L. Diening, P. Harjulehto, P. Hästö, M. Růžička (211): Lebesgue and Sobolev Spaces with Variable Exponents Springer-Verlag, Berlin Heidelberg. L. Diening, J. Málek, M. Steinhauer (28): On Lipschitz Truncations of Sobolev Functions (With Variable Exponent) and Their Selected Applications ESAIM: Control, Optimisation and Calculus of Variations 14(2):211-232. L. Diening, M. Růžička (21): An existence result for non-newtonian fluids in non-regular domains Discrete and Continuous Dynamical Systems Series S 3(2):255-268. Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 13 / 14

Thank you for your attention! Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 14 / 14