ECE 546 Lecture 02 Review of Electromagnetics

Similar documents
Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 6. Dielectrics and Capacitance

ELECTROSTATIC FIELDS IN MATERIAL MEDIA

ECE 598 JS Lecture 08 Lossy Transmission Lines

Preparatory School to the Winter College on Optics in Environmental Science January 2009

Chapter 8. The Steady Magnetic Field 8.1 Biot-Savart Law

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

37 Maxwell s Equations

( ) ( ) ( ) ( ) ( z) ( )

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

Chapter 2 GAUSS LAW Recommended Problems:

Module 4: General Formulation of Electric Circuit Theory

Kinetics of Particles. Chapter 3

Time varying fields and Maxwell's equations Chapter 9

!"#$%&'()%"*#%*+,-./-*+01.2(.* *!"#$%&"'(()'*+,"-'.'

ECE 2100 Circuit Analysis

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

ENGI 4430 Parametric Vector Functions Page 2-01

Chapter 23 Electromagnetic Waves Lecture 14

Short notes for Heat transfer

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

Chapter VII Electrodynamics

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Figure 1a. A planar mechanism.

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Honors Physics Final Review Summary

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

TECHNO INDIA BATANAGAR

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 24 Prof. Steven Errede LECTURE NOTES 24 MAXWELL S EQUATIONS

Equilibrium of Stress

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Information for Physics 1201 Midterm I Wednesday, February 20

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

Notes 19 Gradient and Laplacian

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Chapter 3 Kinematics in Two Dimensions; Vectors

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

FIELD QUALITY IN ACCELERATOR MAGNETS

Electric Current and Resistance

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

PHYS College Physics II Final Examination Review

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Basics of Electromagnetics Maxwell s Equations (Part - I)

Review for the final exam (Math 127)

Chapter 4. Unsteady State Conduction

GAUSS' LAW E. A. surface

ECE 497 JS Lecture - 14 Projects: FDTD & LVDS

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Lecture 6: Phase Space and Damped Oscillations

Copyright Paul Tobin 63

TUTORIAL 7. Discussion of Quiz 2 Solution of Electrostatics part 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Lecture 5: Equilibrium and Oscillations

Unit-1 Electrostatics-1

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics

Chapter 30. Inductance

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

Work, Energy, and Power

Notes 18 Faraday s Law

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1

A Review of Basic Electromagnetic Theories

Solution to HW14 Fall-2002

Fields and Waves I. Lecture 3

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution)

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

Coupled Inductors and Transformers

TOPPER SAMPLE PAPER 2 Class XII- Physics

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Radiation Integrals and Auxiliary Potential Functions

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Chapter 7. Time-Varying Fields and Maxwell s Equations

ECE 107: Electromagnetism

On Boussinesq's problem

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

AIR FORCE RESEARCH LABORATORY

ME 458: Electronic Packaging and Materials Electromagnetic part Lecture note

20 Faraday s Law and Maxwell s Extension to Ampere s Law

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Chapter 7. Time-Varying Fields and Maxwell s Equation

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Today in Physics 122: electrostatics review

( ) ( ) Pre-Calculus Team Florida Regional Competition March Pre-Calculus Team Florida Regional Competition March α = for 0 < α <, and

Transcription:

C 546 Lecture 0 Review f lectrmagnetics Spring 018 Jse. Schutt-Aine lectrical & Cmputer ngineering University f Illinis jesa@illinis.edu C 546 Jse Schutt Aine 1

Printed Circuit Bard C 546 Jse Schutt Aine

High-Density Package C 546 Jse Schutt Aine 3

D H B lectrmagnetic Quantities lectric field (Vlts/m) lectric flux density (Culmbs/m ) Magnetic field (Amperes/m) Magnetic flux density (Webers/m ) J Current density (Amperes/m ) Charge density (Culmbs/m ) C 546 Jse Schutt Aine 4

Maxwell s quatins B t H J D t D Faraday s Law f Inductin Ampère s Law Gauss Law fr electric field B 0 Gauss Law fr magnetic field C 546 Jse Schutt Aine 5

Cnstitutive Relatins B H D Permittivity : Farads/m Permeability : Henries/m Free Space 1 8.8510 F / m 7 4 10 H / m C 546 Jse Schutt Aine 6

D H J t Cntinuity quatin D H J J D t t 0 D J t 0 C 546 Jse Schutt Aine 7

lectrstatics t Assume n time dependence 0 0 Since 0, such that where is the scalar ptential with we get we get Pissn s quatin if n charge is present 0 Laplace s quatin C 546 Jse Schutt Aine 8

Integral Frm f M C dl BdS t S H dl J ds D ds t C S S S DdS dv V S BdS 0 C 546 Jse Schutt Aine 9

Bundary Cnditins nˆ 0 1 nˆ H H J 1 nˆ D D 1 1 nˆ B B 0 S S, H, D, B 1 1 1 1, H, D, B ˆn C 546 Jse Schutt Aine 10

Free Space Slutin H t H t 0 Faraday s Law f Inductin Ampère s Law Gauss Law fr electric field B 0 Gauss Law fr magnetic field C 546 Jse Schutt Aine 11

C 546 Jse Schutt Aine 1 H t t t Wave quatin t Wave quatin can shw that H H t

Wave quatin x y z t separating the cmpnents x x x x x y z t y y y y x y z t x y z t z z z z C 546 Jse Schutt Aine 13

Wave quatin Plane Wave (a) Assume that nly x exists y = z =0 (b) Only z spatial dependence x y 0 x x z t This situatin leads t the plane wave slutin In additin, assume a time harmnic dependence x j t e t then j C 546 Jse Schutt Aine 14

Plane Wave Slutin z x x slutin j z x e frward wave j z x e backward wave where prpagatin cnstant In the time dmain slutin x() t cst z frward traveling wave x() t cst z backward traveling wave C 546 Jse Schutt Aine 15

Plane Wave Characteristics where prpagatin cnstant 1 v prpagatin velcity In free space 1 8 vc 310 m/ s C 546 Jse Schutt Aine 16

Slutin fr Magnetic Field H jh t xˆ yˆ zˆ 1 1 H j j x y z x 0 0 j z If we assume that x ˆ e j z then H yˆ e j z If we assume that x ˆ e j z then H yˆ e intrinsic impedance f medium C 546 Jse Schutt Aine 17

Time-Average Pynting Vectr P() t t H t Pynting vectr W/m time average Pynting vectr W/m 1 T 1 T P P() t dt t H t dt T 0 T 0 We can shw that 1 Re * P H where and H are the phasrs f ( t) and H( t) respectively C 546 Jse Schutt Aine 18

H t H J t Material Medium J jh H J j : cnductivity f material medium ( 1 m 1 ) since H j j j 1 j 1 j r then 1 j C 546 Jse Schutt Aine 19

Wave in Material Medium 1 j 1 j is cmplex prpagatin cnstant j 1 j j assciated with attenuatin f wave assciated with prpagatin f wave C 546 Jse Schutt Aine 0

Wave in Material Medium Slutin: x ˆ e x ˆ e e z z jz decaying expnential 1 1 1/ 1 1 Magnetic field H yˆ e e z j z 1/ Cmplex intrinsic impedance j j C 546 Jse Schutt Aine 1

Wave in Material Medium Phase Velcity: Wavelength: v p 1 1 1/ 1 1 f 1/ Special Cases 1. Perfect dielectric 0 air, free space 0 and C 546 Jse Schutt Aine

Wave in Material Medium. Lssy dielectric Lss tangent: 1 1 8 1 8 3 1 j 8 C 546 Jse Schutt Aine 3

Wave in Material Medium 3. Gd cnductrs Lss tangent: 1 j j j f f j f 1 j j C 546 Jse Schutt Aine 4

Material Medium attenuatin prpagatin d p H, xamples PC 0 0 0 supercnd Gd cnductr f 1 j 1 f finite cpper Pr cnductr / 1 j finite Ice Perfect dielectric 0 / finite air C 546 Jse Schutt Aine 5

Radiatin - Vectr Ptential Assume time harmnicity ~ j H (1) H J j () D / (3) B 0 (4) j t e C 546 Jse Schutt Aine 6

Radiatin - Vectr Ptential Using the prperty: 0 anyvectr B 0 Asuch that AB A 0 A : vectr ptential ja j A 0 C 546 Jse Schutt Aine 7

vectr 0 vectr Vectr Ptential ja where is the scalar ptential Since a vectr is uniquely defined by its curl and its divergence, we can chse the divergence f A chse A such that A j 0 Lrentz cnditin C 546 Jse Schutt Aine 8

B J j AJ j j A A A J A j A j J A j Vectr Ptential A A J D Alembert s equatin C 546 Jse Schutt Aine 9

G r, r' Vectr Ptential Three-dimensinal free-space Green s functin j rr' e 4 r r' Vectr ptential A r V ' Jr' e 4 r r' j rr' dv' Frm A, get and H using Maxwell s equatins C 546 Jse Schutt Aine 30

Fr infinitesimal antenna, the current density is: J r zi dl ( x') ( y ') ( z ') ' ˆ A r z e ˆ 4 Idl r Vectr Ptential Calculating the vectr ptential, jr In spherical crdinates, zˆ rˆ cs ˆ sin C 546 Jse Schutt Aine 31

Vectr Ptential Idl ˆ ˆcs ˆ sin A r z r e 4 r Reslving int cmpnents, jr Idl cs A ˆ r z e 4 r jr A Idl 4 sin e r jr C 546 Jse Schutt Aine 3

and H Fields Calculate and H fields 1 H A 1 A H sin r A 0 sin H 1 1 A r ra r sin r 0 C 546 Jse Schutt Aine 33

and H Fields H 1 A ra r r r Idl 1 jr H j 1 e sin 4r jr 1 H j r r 1 H sin 1 sin j C 546 Jse Schutt Aine 34

and H Fields csidl 1 jr 1 r j 1 e 4 r jr j 1 rh 1 r r j j Idl 1 1 1 sin 1 jr j e 4 r jr r j C 546 Jse Schutt Aine 35

and H Fields csidl 1 jr 1 r j 1 e 4 r jr j j Idl j r 1 1 e sin 1 4 r jr jr Idl 1 jr H j 1 e sin 4r jr C 546 Jse Schutt Aine 36

Far field : r r Far Field Apprximatin 0 1 1 r r then, 0 r j Idl 4 r e jr sin H j Idl 4 r Nte that: e jr H sin,where C 546 Jse Schutt Aine 37

Far Field Apprximatin Characteristics f plane waves Unifrm cnstant phase lcus is a plane Cnstant magnitude Independent f Des nt decay Similarities between infinitesimal antenna far field radiated and plane wave (a) and H are perpendicular (b) and H are related by (c) is perpendicular t H C 546 Jse Schutt Aine 38

Pynting Vectr Pt t Ht Time-average Pynting vectr r TA pwer density 1 P Re H * and H here are PHASORS I dl ˆ rˆ P Re H r 4r sin C 546 Jse Schutt Aine 39

Time-Average Pwer Ttal pwer radiated (time-average) P= P ds with ds rr ˆ sindd 0 0 P= 0 0 I dl 4 r r sin sindd Idl P= 4 3 d sin 0 C 546 Jse Schutt Aine 40

Time-Average Pwer P= 4 Idl 3 4 Pynting Pwer Density Directive Gain = AveragePynting Pwer Density ver area f sphere with radius r Directive Gain = P P /4 r C 546 Jse Schutt Aine 41

Fr infinitesimal antenna, Directive Gain 3 Directive Gain sin Directivity I dl sin 4 r 4 I dl /4 r 3 4 C 546 Jse Schutt Aine 4

Directivity: gain in directin f maximum value Radiatin resistance: Frm 1 P P RI we have: rad I Fr infinitesimal antenna: Directivity R R rad 4 Idl dl I 3 4 3 C 546 Jse Schutt Aine 43

Radiatin Resistance Fr free space, 10 R rad 80 dl (fr Hertzian diple) The radiatin resistance f an antenna is the value f a fictitius resistance that wuld dissipate an amunt f pwer equal t the radiated pwer P r when the current in the resistance is equal t the maximum current alng the antenna A high radiatin resistance is a desirable prperty fr an antenna C 546 Jse Schutt Aine 44