Influence Diagnostics in a Bivariate GARCH Process

Similar documents
RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA

Multivariate GARCH modeling analysis of unexpected U.S. D, Yen and Euro-dollar to Reminibi volatility spillover to stock markets.

Additive Outliers (AO) and Innovative Outliers (IO) in GARCH (1, 1) Processes

Modeling exchange rate exposure in the Japanese industrial sectors

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

January Examinations 2012

Department of Economics University of Toronto

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

The Impact of SGX MSCI Taiwan Index Futures on the Volatility. of the Taiwan Stock Market: An EGARCH Approach

DYNAMIC ECONOMETRIC MODELS Vol. 8 Nicolaus Copernicus University Toruń 2008

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

Volatility Interpolation

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

The volatility modelling and bond fund price time series forecasting of VUB bank: Statistical approach

Midterm Exam. Thursday, April hour, 15 minutes

Bayesian Inference of the GARCH model with Rational Errors

Modelling Financial Returns and Volatility Across Environmental Industry Sectors

Analysis And Evaluation of Econometric Time Series Models: Dynamic Transfer Function Approach

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Robustness Experiments with Two Variance Components

Oil price volatility and real effective exchange rate: the case of Thailand

Volatility Modelling of the Nairobi Securities Exchange Weekly Returns Using the Arch-Type Models

Economic Computation and Economic Cybernetics Studies and Research, Issue 4/2017; Vol. 51

Common persistence in conditional variance: A reconsideration. chang-shuai Li

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Solution in semi infinite diffusion couples (error function analysis)

Economic Integration and Structure Change in Stock Market Dependence: Empirical Evidences of CEPA

ハイブリッドモンテカルロ法に よる実現確率的ボラティリティモデルのベイズ推定

(Information Set at time t 1). Define u process by. process is then defined to follow an ARCH model if the conditional mean equals zero,

ACEI working paper series RETRANSFORMATION BIAS IN THE ADJACENT ART PRICE INDEX

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

Volume 30, Issue 4. Abd Halim Ahmad Universiti Utara Malaysia

CHOOSING THE BEST PERFORMING GARCH MODEL FOR SRI LANKA STOCK MARKET BY NON-PARAMETRIC SPECIFICATION TEST

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

THE FORECASTING ABILITY OF A COINTEGRATED VAR DEMAND SYSTEM WITH ENDOGENOUS VS. EXOGENOUS EXPENDITURE VARIABLE

Returns and Volatility Asymmetries in Global Stock Markets

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

Adaptive Multivariate Statistical Process Control for Monitoring Time-varying Processes 1

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

Time Scale Evaluation of Economic Forecasts

Application of Vector Error Correction Model (VECM) and Impulse Response Function for Analysis Data Index of Farmers Terms of Trade

Bernoulli process with 282 ky periodicity is detected in the R-N reversals of the earth s magnetic field

2. SPATIALLY LAGGED DEPENDENT VARIABLES

Financial Volatility Forecasting by Least Square Support Vector Machine Based on GARCH, EGARCH and GJR Models: Evidence from ASEAN Stock Markets

JEL Codes: F3, G1, C5 Keywords: International Finance, Correlation, Variance Targeting, Multivariate GARCH, International Stock and Bond correlation

High frequency analysis of lead-lag relationships between financial markets de Jong, Frank; Nijman, Theo

Econometric Modelling of. Selected Approaches. Michaela Chocholatá University of Economics Bratislava

Math 128b Project. Jude Yuen

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

Testing the Null Hypothesis of no Cointegration. against Seasonal Fractional Cointegration

Variance Stabilizing Power Transformation for Time Series

The Systematic Tail Risk Puzzle in Chinese Stock Markets: Theoretical Model and Empirical Evidence

CHAPTER 10: LINEAR DISCRIMINATION

Stability Analysis of Fuzzy Hopfield Neural Networks with Timevarying

Standard Error of Technical Cost Incorporating Parameter Uncertainty

Spatial GARCH: A spatial approach to multivariate volatility modelling

Equity Risk Premium and Regional Integration

Machine Learning Linear Regression

Applied Econometrics and International Development Vol- 8-2 (2008)

On One Analytic Method of. Constructing Program Controls

Chapter 8 Dynamic Models

On computing differential transform of nonlinear non-autonomous functions and its applications

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Sensitivity, Persistence and Asymmetric Effects in International Stock Market Volatility during the Global Financial Crisis

MODELING TIME-VARYING TRADING-DAY EFFECTS IN MONTHLY TIME SERIES

Relative controllability of nonlinear systems with delays in control

CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING

Joanna Olbryś * Asymmetric Impact of Innovations on Volatility in the Case of the US and CEEC 3 Markets: EGARCH Based Approach

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Kayode Ayinde Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology P. M. B. 4000, Ogbomoso, Oyo State, Nigeria

Advanced time-series analysis (University of Lund, Economic History Department)

( ) [ ] MAP Decision Rule

P R = P 0. The system is shown on the next figure:

Methods for the estimation of missing values in time series

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Delay Dependent Robust Stability of T-S Fuzzy. Systems with Additive Time Varying Delays

PERISHABLES INVENTORY CONTROL MODEL UNDER TIME- VARYING AND CONTINUOUS DEMAND

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

Scientific Research. Vol.1, No.1, May Modern Economy ISSN:

Garched investment decision making with real risk

A ROBUST NON-LINEAR MULTIVARIATE KALMAN FILTER FOR ARBITRAGE IDENTIFICATION IN HIGH FREQUENCY DATA

Normal Random Variable and its discriminant functions

A Paper presentation on. Department of Hydrology, Indian Institute of Technology, Roorkee

PubH 7405: REGRESSION ANALYSIS DIAGNOSTICS IN MULTIPLE REGRESSION

On the linkages between stock prices and exchange rates: Evidence from the

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Testing Twin Deficits and Saving-Investment exus in Turkey [ FIRST DRAFT] Abstract

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Vegetable Price Prediction Using Atypical Web-Search Data

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes

Machine Learning 2nd Edition

Chapter 6: AC Circuits

3. OVERVIEW OF NUMERICAL METHODS

Single-loop system reliability-based topology optimization considering statistical dependence between limit-states

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Transcription:

Influence Dagnoscs n a Bvarae GARCH Process an Qu Jonaan Dark Xbn Zang Deparmen of Economercs and Busness Sascs Monas Unversy Caulfeld Eas VIC 345 Ausrala Marc 6 Absrac: In s paper we examne nfluence dagnoscs for deecng oulers and nfluenal observaons n bvarae GARCH models. e paper exends e slope and curvaure based dagnoscs proposed by Zang and Kng 5 for e unvarae GARCH model. An nnovave perurbaon sceme s nroduced o e consan correlaon bvarae GARCH model of Bollerslev 99 and e varyng correlaon bvarae GARCH model of se and su. By examnng e nfluence grap we locae nfluenal observaons n a mulvarae conex. Some emprcal examples glg e usefulness of e approac. Keywords: consan correlaon curvaure-based dagnosc nfluenal observaons slope-based dagnosc me-varyng correlaon.

Inroducon e success of e auoregressve condonal eeroscedascy ARCH and generalsed ARCH GARCH class of processes n modellng volaly s well documened. A vas leraure exendng e unvarae GARCH class of processes o mulvarae GARCH MGARCH as also developed see Bera and Hggns 993 and Bollerslev e al 99 for revews. Despe e success of e GARCH class of processes e usual esmaon approaces are no very robus o exreme or nfluenal observaons Bera and Hggns 993; Zang and Kng 5. Oulers may sgnfcanly nfluence parameer esmaes and subsanally worsen e forecasng performance of GARCH models. Falng o allow for oulers may also serously affec e asympoc se and power of e Lagrange Mulpler es for ARCH effecs see Djk e al 999; Franses and Gjsels 999; Zang and Kng 5 for furer dscusson. e denfcaon of nfluenal observaons n unvarae and mulvarae GARCH models s erefore of grea mporance. e am of nfluence analyss s o examne e effec of relevan mnor perurbaons on some key resuls n a posulaed model. Cook 986 presened a geomerc meod for assessng s n a lnear regresson model. Here a lkelood dsplacemen funcon was defned for e purpose of assessng nfluence va a curvaure-based dagnosc. Bllor and Loynes 993 defned a modfed lkelood dsplacemen on wc nfluence s examned roug slope-based dagnoscs. Usng e modfed lkelood dsplacemen Zang and Kng 5 derved e curvaure-based dagnosc for e unvarae GARCH model. In s paper we exend e curvaure-based dagnosc proposed by Zang and Kng 5 o assess nfluenal observaons n bvarae GARCH models. Our nfluence analyss focuses on e consan-correlaon MGARCH model of Bollerslev 99 and e me-varyng correlaon MGARCH model of su and se. e res of s paper s organed as follows. Secon brefly revews e meods for ouler deecon and nfluence analyss n GARCH models. In secon 3 we derve e dervaves needed for e curvaure-based dagnoscs for e consan-correlaon bvarae GARCH model and e me-varyng correlaon GARCH model. Secon 4 apples e meodology o e compose prce ndex of e Sanga Excange and e Senen Excange; e Ausralan All Ordnares ndex and s SPI fuures; and e S&P 5 spo and s fuures. Concludng remarks follow n secon 5.

Influence Dagnoscs wo mporan sylsed facs of fnancal me seres are volaly cluserng and excessve kuross. e ARCH and GARCH models aemp o capure ese feaures owever many emprcal sudes observe a ese models are unable o capure all e excess kuross. One possble explanaon s a e me-seres are affeced by occasonal unpredcable evens wc make e condonal dsrbuon eavy-aled. Influence analyss s robus o e maskng effec and also assumes a e mng of oulers s unknown. In e conex of unvarae GARCH models Lug 4 employed e meod of forward searc wle Zang and Kng 5 conduced nfluence dagnoscs based on e second order approac. Bo procedures overcome e maskng effec owever ey do no gve a creron o correc e deeced oulers. o dae nfluence analyss as no been appled o mulvarae GARCH esmaon. In s paper we exend e second order approac of Zang and Kng 5 o a mulvarae seng. We focus on e correlaon esmaes obaned from e consan correlaon MGARCH model of Bollerslev 99 and e varyng correlaon MGARCH model of se and su. Assume a we ave observaons for a gven model le denoe e parameer vecor esmaed by maxmng e log-lkelood funcon L. Denoe L as e log-lkelood funcon obaned afer assgnng weg o eac observaon.e. nroducng a perurbaon vecor o e daa se. e followng perurbaon vecor K s assumed al for K were s e pon of null perurbaon. Defne e log-lkelood dsplacemen funcon as LD [ L L ] o nvesgae e nfluence of observaons Cook 986 suggesed evaluang e normal curvaure wc measures e local beavour of LD a e null pon. e e nervenon analyss Box and ao 975 and mssng value meods Ljung 989 are proposed o andle oulers w known mng. 3

mos mporan dagnosc of local nfluence analyss s e drecon vecor along e maxmum normal curvaure were e greaes local cange occurs. e frs order approac of Cook 986 uses e drecon vecor of e maxmum slope as nfluence dagnoscs. e second order approac of Wu and Luo 993 uses e drecon vecor of maxmum curvaure as nfluence dagnoscs. s paper examnes bo approaces bu focuses on e second order approac. Gven e perurbaon vecor of Zang and Kng 5 proved e normal curvaure of LD a e null pon s C l were l F l 3 / [ F F] l [ I F F ] l L F 4 L L L L F Denoe [ ] / A F B F F [ I F F ]. en e maxmum curvaures C l max s e larges egenvalue of e caracersc equaon A λ B 6 e egenvecor of e larges egenvalue s e drecon vecor l max of maxmum curvaure. e ndex plo of l max may reveal ose nfluenal observaons a ave a srong effec on LD because e MLE s mos sensve n e drecon of lmax under small perurbaons. e frs-order dagnoscs are equal o F n 4 wc s a by-produc of e second order approac. 5 e ouler searcng procedure appled n e presen paper s as follows. Frs we oban e quas maxmum lkelood esmaes QMLE of parameers from e unperurbed model. Second we use e analycal dervaves derved n Secon 4 o solve equaon 6. Las we use e ndex plo of l max o vsually denfy nfluenal observaons. Wu and Lou 993a argued a e second order dagnoscs can provde nformaon a e frs order dagnoscs fal o provde. 4

3 Curvaure-Based Dagnosc n Bvarae GARCH Models 3. Consan Correlaon Bvarae GARCH Consder e followng bvarae me seres{ e } w ero means and GARCH condonal varances. e H ~ γ α e for 7 / 8 were H s e condonal covarance marx and s e correlaon beween seres and. We assume a γ α and are nonnegave wα <. e log lkelood funcon may be expressed as L log log log - were s a K parameer vecor. e e e - e 9 e coce of perurbaon sceme maers because dfferen perurbaon scemes may resul n dfferen nfluence dagnoscsl max. Bllor and Loynes 993 dvded perurbaons no model and daa perurbaons. We employ a model perurbaon sceme because a daa perurbaon sceme would nroduce addonal complexy va a perurbaon vecor. Assume a e perurbaon vecor K s nroduced o e log-lkelood funcon L va equaon 8. e perurbed condonal covarance can be represened as. Under s perurbaon sceme e perurbed log-lkelood funcon s L log e e e e log log e pon of null perurbaon s an vecor of uny. o compue F and F we need e followng dervaves. 5

6 L s an vecor w e elemen gven by were are e sandarded resduals. L s a K marx wc can be paroned as 3 L L L L 3 Le. 3 α γ α γ en L s a 3 marx w e column gven by [ ] L s a 3 marx w e column beng [ ] L 3 s a row vecor w e elemen beng 3 4 6 Gven e condonal volaly defned by 7 and are obaned va e followng recursve equaons e α α γ α γ 4 w e nal values beng. e α γ.

L s an dagonal marx w e dagonal elemen beng 3 3 3. 5 L s e second dervave esmae of e nformaon marx and s approxmaed numercally va e Hessan. 3 All of e dervaves n -5 are compued a and e MLE of. 3. Varyng Correlaon Bvarae GARCH e assumpon of consan correlaons can adversely affec e relably of sascal nference f volaed. se and su exended e consan-correlaon model o allow for me-varyng correlaon. For e bvarae varyng-correlaon GARCH model e correlaon parameer n 8 s replaced by ψ 6 M ψ w e /. 7 4 M M w and. 5 Assumng normaly e log-lkelood funcon can be expressed as 6 L log log log. 8 Assume a e perurbaon vecor s nroduced o e log-lkelood funcon va e condonal correlaon 6. Express e perurbaon sceme as 3 Engle and Bollerslev 986 Bollerslev Engle and elson 994 dscussed e analyc dervaves n e GARCH conex. Due o e complexy nvolved esmaon usually reles on e numercal esmaes. Forenn and Calolar 996 argue a e benef of usng analycal dervaves s small wo reasons. Frs a comparson of e Hessan marx obaned analycally and numercally for e unvarae GARCH conex found e dfference o be farly small. Second e dervaon of analycal dervaves for L n MGARCH s burdensome especally for e varyng correlaon srucure n secon 4.. 4 In s paper M wc s a necessary condon forψ o be posve defne. 5 e CC-MGARCH model s nesed wn e VC-MGARCH model under e resrcon. 6 e SQPF algorm of Lawrence and s n OX verson 3. enables e condons and α and α o be mposed durng esmaon. 7

8 / 9 e perurbed me-varyng condonal correlaon s ψ en e log-lkelood funcon under s perurbaon sceme s. log log log L e pon of null perurbaon s an vecor of uny. e dervaves requred for compung F and F n equaons 4-5 are. L. 3 3 3 L 3 L. 3 3 3 4 4 L wc can be approxmaed numercally. e calculaons of a are used by -4 are gven as follows; k - k k k k. Denoe 3 α γ α γ.

9 3 s a 9 column vecor w 3 / for e α γ 5 [ ] j. and 3 j for j 6 e dervaves of w respec o n 5 and 6 can be obaned va 4. 3 A C A C B A 7 B C B C B A 8 3 B A C 9 w C B A.e nal values for 7-9 are and. - k k k k. { } k k dag s an dagonal marx w e k dagonal elemen gven by k k. All e dervaves are compued a and e MLE of.

4 Emprcal Examples 4. Consan Correlaon Bvarae GARCH 4.. Daa s secon examnes e frs daa se DS wc covers e compose prce ndex of Sanga Excange P and compose prce ndex of Senen Excange P. Afer adjusng for oldays eac seres represens 8 daly observaons from January roug May 3. Connuously compounded reurns R and R are calculaed as mes e log of e frs dfferences. Bo R and R are I and exb ARCH effecs. 7 able provdes a summary of e descrpve sascs. e me-seres plo of R and R are n Fgure and Fgure respecvely. I s clear R and R bo exb excess kuross. Inser able and Fgures and e coce of an adequae model s crcal because a poor model wll resul n an over-denfcaon of oulers. e ypoess of consan correlaons s erefore esed va e Lagrange Mulpler LM es of se. e es sascs of LMC.63 can no rejec e null ypoess of consan correlaon. 8 4.. Resuls QMLE esmaes for all parameers n 7-8 are presened n able. e esmaes sugges a bo seres exb volaly perssence. ese esmaes are used o solve 6. e plo of curvaure dagnoscs l max s n Fgure 3. Inser able and Fgure 3 As argued by Zang and Kng 5 ere s lle gudance on ow o deermne weer e curvaure s sgnfcan. Gven a large curvaure value and s assocaed dreconal vecor we mg also ave dffculy n dervng a resold for locang nfluenal observaons. In emprcal sudes vsual nspecon mg be e mos plausble meod for locang nfluenal observaons accordng o e compued curvaure or slope and s assocaed dreconal vecor. e curvaure ndex plo 7 e resuls of e co-negraon es of Engle and Granger 987 sow P and P are co-negraed. Esmaon of e bvarae error correcon GARCH model owever resuled n lle cange n e varance parameer esmaes wen compared o e esmaes assumng a ero mean equaon. For smplcy s paper assumes reurns are of ero means. 8 All e parameers n e esmaed model also pass e yblom sably ess ndvdually and jonly.

suggess a observaons 55 and 583 are nfluenal. ese observaons and e prevous perod s reurn are presened n able 3. Inser able 3 For observaon 55 R remaned nearly uncanged wle R ncreases by 359%. For e oer nfluenal case bo markes ave large posve reurns. Fgure 4 plos e slope dagnoscs for DS were e mos nfluenal observaons are also 55 and 583. e wo markes are volale durng and e deeced oulers fall no s perod. However sould be noed a e oulers are no necessarly exreme reurns. Inser Fgure 4 We also derved nfluence dagnoscs n e unvarae GARCH model for R and R. er curvaure dagnoscs plos are n Fgures 5 and 6 w e nfluenal observaons presened n able 4. Inser able 4 and Fgures 5 & 6 ese oulers dffer from ose n e mulvarae conex w mos of em beng exreme reurns. e exreme negave reurns are more nfluenal an exreme posve reurns of e same magnude. s resul s conssen w e leverage effec. For e slope dagnoscs n Fgures 7 and 8 e mos nfluenal observaon s observaon for bo R and R. Imporanly none of e unvarae dagnoscs uncover observaon 55 as nfluenal. I sould be noed owever a no observaon can be regarded as nfluenal w % assurance. Inser Fgures 7 and 8 4. Varyng Correlaon Bvarae GARCH 4.. Example Daa e second daa se DS consss of e Ausralan All Ordnares Index and s SPI fuures. ere are 97 daly prces for eac seres coverng e perod from January 988 roug Sepember 99. Only ose days were ncluded were radng occurred n bo markes. We creae e daly reurns R3 and R4 e dfferenced logarmc prces presened n percenage for eac prce respecvely.

e summary sascs of R3 and R4 are oulned n able 5 w er me-seres plos n Fgure 9 and Fgure. Bo R3 and R4 are I exb ARCH effecs and excess kuross. e LMC es rejecs e null of consan correlaon a % level LMC 5.57 9. Inser able 5 and Fgures 9 and Resuls e QMLE esmaes for all parameers are n able 6. Dagnoscs on e sandardsed resduals exb excess kuross ndcang e possbly of oulers. e curvaure dagnoscs are ploed n Fgure. e deeced nfluenal observaons are presened n able 7. Inser ables 6 and 7 and Fgure For e mos nfluenal observaon 453 bo markes exb er larges negave reurns e cange of R4 s muc larger an R3. e second nfluenal case observaon 96 also sees bo markes experence large negave reurns. Observaon 433 and 7 sow a dfferen paern e reurns of R4 cange grealy wle R3 reman nearly uncanged. e slope dagnoscs plo for DS s n fgure. e slope dagnoscs plo sn as nformave as a of curvaure dagnoscs were e four observaons are also among nfluenal observaons. Fgure We also examne e curvaure dagnoscs n e unvarae GARCH model for R3 and R4. e plos of curvaure dagnoscs are n Fgures 3 and 4 w plos of slope dagnoscs n Fgures 5 and 6. For R3 e curvaure dagnoscs are a lle nosy w observaons 63R3.9 and 97R3.9 e mos nfluenal. Is slope dagnoscs ndcae observaons 453 and 96 are mos nfluenal. For R4 observaon 453 and 96 are nfluenal of bo curvaure and slope dagnoscs. one of e dagnoscs uncover observaons 433 and 7 wc were deeced n e MGARCH model. Inser Fgures 3 6 9 s s conssen w e rejecon of e lkelood rao es for e resrcon H. :

4.. Example Daa e rd daa se DS3 consss of e S&P5 Index and s fuures. R5 and R6 are e reurns for e spo and fuures prces respecvely. ere are observaons from December 999 o December 3. Summary sascs are n able 8. e deparures from normaly of bo R5 and R6 are no as serous as R3 and R5. e me-seres plos n Fgures 7 and 8 ndcae a ere are no exreme reurns. Inser able 8 and Fgures 7 and 8 e LMC of 4.6 s sgnfcan a e 5% level rejecng e ypoess of consan correlaon. s s conssen w MLE esmaon of 6 were e resrcon H s rejeced. : Resuls e QMLE esmaes for e VC-MGARCH models are n able 9. e sandarded resduals sll exb excess kuross. e curvaure dagnoscs are ploed n Fgure 9. e deeced nfluenal observaons are presened n able. Inser ables 9 and and Fgure 9 For observaons 48 R5 decreases from.96 o.76 wle R6 ncreases from.7 o 3.36. Observaons 79 exb e smlar paern. For observaon 47 bo reurns ncrease bu e ncrease of R5 s muc greaer. e slope dagnoscs plo s n Fgure were e mos nfluenal observaon s observaon 79. e curvaure dagnoscs n e unvarae GARCH model for R5 and R6 are n Fgure - w e deeced oulers oulned n able. Inser able and Fgures e deeced oulers also end o be large reurns of eer sgn bu none of em were deeced n e VC-MGARCH model. For e slope dagnoscs of bo R5 and R6 Fgure 3-4 observaon 44R5-4.9 R6-5.9 s e mos nfluenal followed by observaon 8 R5-5.76 R6-6.8. In summary e resuls are conssen w our pror expecaon. e nfluenal observaons on e condonal varance were large posve and negave reurns. e nfluenal observaons on e condonal correlaon consan or me-varyng occur wen e relaonsp or correlaon beween e wo markes s dsurbed. Gven e g correlaon level n DS DS and DS3 nfluenal observaons were 3

denfed wen e percenage cange n reurns dffered grealy beween markes. s was denfed wen reurns remaned vrually uncanged n one marke bu moved grealy n e oer marke reurns ncreased n one marke wle decreased n e oer marke; and large absolue reurns moved n e same drecon. e resuls erefore glg e mporance of exendng e nfluence dagnoscs o e mulvarae GARCH seng. s s because caegores and may be dffcul o denfy wou nfluence dagnoscs gven a e magnudes of e reurns may be wn normal levels. 5 Concluson In s paper we appled nfluence dagnoscs for deecng oulers and nfluenal observaons n bvarae GARCH models usng bo e slope and curvaure-based dagnoscs dscussed n Zang and Kng 5. In parcular e paper examned e nfluence of mnor perurbaons n e consan-correlaon bvarae GARCH model of Bollerslev 99 and e varyng-correlaon bvarae GARCH model of se and su. Our aemp represens e frs emprcal work of assessng nfluence n a bvarae GARCH model. In addon o assessng nfluence n e conex of a bvarae GARCH model we examne nfluence n e conex of e unvarae GARCH model. Resuls sow a e condonal varance s affeced by large reurn observaons wle nfluenal observaons on e condonal correlaon occur wen e correlaon beween e wo markes s dsurbed. Gven e g correlaon levels beween e daa ses examned s occurred wen e relave cange n reurn dffered grealy beween e wo markes. ese observaons may no necessarly be nfluenal n a unvarae GARCH model. e resuls erefore llusrae e mporance of usng e dagnoscs developed n s paper wen esmang bvarae GARCH models. 4

REFERECES Bera A. and Hggns M. 993 ARCH Models: Properes Esmaon and esng Journal of Economc Surveys 7 35-6. Bllor. and Loynes R.M. 993 Local Influence: A ew Approac Communcaons n Sascs eory and Meods 595-6. Bollerslev. Cou R. and Kroner K. 99 ARCH Modellng n Fnance: A Revew of e eory and Emprcal Evdence Journal of Economercs 5 5-59. Bollerslev. Engle R. and elson D. 994 ARCH Models Handbook of Economercs 4 Elsever Amserdam 959-338. Bollerslev. 99 Modellng e Coerence n Sor Run omnal Excange Raes: A Mulvarae Generaled ARCH Model Revew of Economcs and Sascs 7 498-55. Box G. E. P. and ao G. C. 975 Inervenon Analyss w Applcaon o Economc and Envronmenal Problems Journal of e Amercan Sascal Assocaon 7 7-79. Cook R. D. 986 Assessmen of Local Influence w dscusson Journal of e Royal Sasc Socey Ser. B 48 33-69. Djk D.V. Franses P.H. and Lucas A. 999 esng for GARCH n e Presence of Addve Oulers Journal of Appled Economercs 4 539-56. Engle R. and Bollerslev. 986 Modellng e Perssence of Condonal Varances Economerc Revew 5-5. Engle R. and Granger C. 987 Co-Inegraon and Error Correcon: Represenaon Esmaon and esng Economerca 55 5-76. Forenn G. and Calolar G. 996 Analyc Dervaves and e Compuaon of GARCH Esmaes. Journal of Appled Economercs 399-47. Franses P.H. and Gjsels H. 999 Addve Oulers GARCH and Forecasng Volaly Inernaonal Journal of Forecasng 5-9. Lawrence C. and s A. A Compuaonal Effcen Feasble Sequenal Quadrac Programmng Algorm SIAM Journal on Opmsaon 9-8. Ljung G.M. 989 A oe on e Esmaon of Mssng Values n me Seres Communcaon sn Sascs. Smulaon and Compuaon 8 459-465. se Y. A es for Consan Correlaons n a Mulvarae GRACH Model Journal of Economercs 98 7-7. 5

se Y. and su A. A Mulvarae Generaled Auoregressve Condonal Heeroscedascy Model w me-varyng Correlaons Journal of Busness and Economc Sascs 35-36. Wu X. and Luo Z. 993 Second-Order Approac o Local Influence Journal of e Royal Sasc Socey Seres B 55 99-936. Zang X. and Kng M. L. 5 Influence Dagnoscs n Generaled Auoregressve Condonal Heeroscedascy Processes Journal of Busness and Economc Sascs 3 8-9. 6

able Summary Sascs for DS R R Mean.5.8 Sd.Dev..43.5 Maxmum 9.4 9.44 Mnmum -6.543-6.87 Skewness.775.548.77 -.56 Kuross.364 9.56 6.97 6.63 Jarque-Bera Sasc 887.799** 344.766** **Sgnfcan a e % level. Sascs for sandarded resduals are gven n pareneses able Esmaon Resuls for e Consan-Correlaon MGARCH for DS Equaons γ α e for Parameers γ α Esmaes.933**.53**.8393**.985** QMLE Sd. Error.35.96.35.7.97 3.9 4. 57.69 γ α Esmaes.894**.54**.85** QMLE Sd. Error.79.3.83 3. 4.55 3.5 -raos are gven n pareneses **Sgnfcan a e % level 7

able 3 Second order nfluence dagnoscs for CCMGARCH-DS Observaon 55 583 Reurn R -.6 R.64 R8.84 Prevous Reurn -.65 -.66 3.3 R8.67 3.84 able 4 Second order nfluence dagnoscs unvarae GARCH -DS R R Observaon 44 583 57 373 Reurn -4.73 8.85 -.87-5.4 Observaon 44 373 583 Reurn -5. -5.4 8.68 8.87 8

able 5 Summary Sascs for DS R3 R4 Mean.8. Sd.Dev..873.68 Maxmum 3.78 4.44 Mnmum -8.44 -.46 Skewness.85 -.84 -.7 -.688 Kuross.4.5.734 7.94 Jarque-Bera Sasc 9.84** 596.3** **Sgnfcan a e % level. Sascs for sandarded resduals are gven n pareneses able 6 Esmaon Resuls for e me-varyng Correlaon MGARCH for DS Equaons γ α e for ψ Parameers Varance Equaon γ α Esmaes.779.77**.89** QMLE Sd. Error.45.348.83.73. 9.9 Varance Equaon γ α Esmaes.59.63**.946** QMLE Sd. Error.37.83.47.58.6 9. Correlaon Equaon Esmaes.683**.73.8779** QMLE Sd. Error.786.9.7.8.4 75. -raos are gven n pareneses **Sgnfcan a e % level 9

able 7 Second order nfluence dagnoscs for VC-MGARCH DS Observaons 453 96 433 7 R3 R4 R3 R4 R3 R4 R3 R4 Reurn -8.44 -.4-4. -5.44..63..79 Prevous Reurn.68.43.63.9.6 -.89..8

able 8 Summary Sascs for DS3 R5 R6 Mean -. -. Sd.Dev..383.43 Maxmum 5.73 5.94 Mnmum -5.758-6.78 Skewness..5 -. 9 -.74 Kuross 4.3 4.39 3.87 3.779 Jarque-Bera Sasc 79.736** 344.766** **Sgnfcan a e % level. Sascs for sandarded resduals are gven n pareneses able 9 Esmaon Resuls for e me-varyng Correlaon MGARCH for DS3 Equaons γ α e for ψ Parameers Varance Equaon γ α Esmaes.493.598**.933** QMLE Sd. Error.6.4.4.88 4. 37.9 Varance Equaon γ α Esmaes.433.5**.958** QMLE Sd. Error.6.3.6.66 4.8 4. Correlaon Equaon Esmaes.3539**.88.9746** QMLE Sd. Error.565.583.7 -raos are gven n pareneses **Sgnfcan a e % level.6.5 359.6

able Second order nfluence dagnoscs for VC-MGARCH DS3 Observaon 48 47 79 Reurn R5.76 R63.36 R5.96 R6.6 R5. Prevous.96.7 -.59 -.7. Reurn R6.64.7 able Second order nfluence dagnoscs unvarae GARCH DS3 R5 R6 Observaon 53 654 44 Reurn -.86-3.83 5.73-4.9 Observaon 68 53 8 355 Reurn -4.9-3.8-6.8.46

Fgure me-seres Plo of R Sock Reurns of Sanga Excange 8 6 4 - -4-6 -8 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure me-seres Plo of R Sock Reurns of Senen Excange 8 6 4 - -4-6 -8 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure 3 Curvaure Dagnoscs for DS consss of R and R..5 -.5 -. -.5 -. 7 53 79 5 3 57 83 9 35 6 87 33 339 365 39 47 443 469 495 5 547 573 599 65 65 677 73 79 755 78 3

Fgure 4 Slope Dagnoscs for DS consss of R and R 8 6 4-4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure 5 Curvaure Dagnoscs for R Sock Reurns of Sanga Excange.8.6.4. -. -.4 -.6 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure 6 Curvaure Dagnoscs for R Sock Reurns of SenZen Excange.8.6.4. -. -.4 -.6 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 4

Fgure 7 Slope Dagnoscs for R Sock Reurns of Sanga Excange 5-5 - -5 - -5-3 -35 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure 8 Slope Dagnoscs for R Sock Reurns of SenZen Excange 5-5 - -5 - -5-3 -35 4 47 7 93 6 39 6 85 8 3 54 77 3 33 346 369 39 45 438 46 484 57 53 553 576 599 6 645 668 69 74 737 76 783 Fgure 9 me-seres Plo of R3 Ausralan All Ordnares Index 6 4 - -4-6 -8-45 89 33 77 65 39 353 397 44 485 59 573 67 66 75 749 793 837 88 95 969 3 57 45 89 5

Fgure me-seres Plo of R4 SPI Fuure 6 4 - -4-6 -8 - - -4 45 89 33 77 65 39 353 397 44 485 59 573 67 66 75 749 793 837 88 95 969 3 57 45 89 Fgure Curvaure Dagnoscs for DS consss of R3 and R4.4. -. -.4 -.6 -.8 -. -. 46 9 36 8 6 7 36 36 46 45 496 54 586 63 676 7 766 8 856 9 946 99 36 8 6 7 Fgure Slope Dagnoscs for DS consss of R3 and R4 8 6 4 - -4 45 89 33 77 65 39 353 397 44 485 59 573 67 66 75 749 793 837 88 95 969 3 57 45 89 6

Fgure 3 Curvaure Dagnoscs for R3 Ausralan All Ordnares Index.3.. 46 9 36 8 6 7 36 36 46 45 496 54 586 63 676 7 766 8 856 9 946 99 36 8 6 7 -. -. -.3 -.4 Fgure 4 Curvaure Dagnoscs for R4 SPI Fuure.8.6.4. -. -.4 -.6 -.8 46 9 36 8 6 7 36 36 46 45 496 54 586 63 676 7 766 8 856 9 946 99 36 8 6 7 Fgure 5 Slope Dagnoscs for R3 Ausralan All Ordnares Index - -4-6 -8 - - 45 89 33 77 65 39 353 397 44 485 59 573 67 66 75 749 793 837 88 95 969 3 57 45 89 7

Fgure 6 Slope Dagnoscs for R4 SPI Fuure - - -3-4 -5-6 45 89 33 77 65 39 353 397 44 485 59 573 67 66 75 749 793 837 88 95 969 3 57 45 89 Fgure 7 me-seres Plo of R5 S&P5 Spo 8 6 4 - -4-6 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963-8 Fgure 8 me-seres Plo of R6 S&P5 Fuure 8 6 4 - -4-6 -8 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 8

Fgure 9 Curvaure Dagnoscs for DS3 consss of R5 and R6.6.4. -. -.4 -.6 39 77 5 53 9 9 67 35 343 38 49 457 495 533 57 69 647 685 73 76 799 837 875 93 95 989 Fgure Slope Dagnoscs for DS3 consss of R5 and R6 45 4 35 3 5 5 5-5 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 Fgure Curvaure Dagnoscs for R5 spo.4.3.. -. -. -.3 -.4 -.5 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 9

Fgure Curvaure Dagnoscs for R6 fuure.4.3.. -. -. -.3 -.4 -.5 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 Fgure 3 Slope Dagnoscs for R5 spo 5-5 - -5 - -5 38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 Fgure 4 Slope Dagnoscs for R6 fuure 5-5 - -5-38 75 49 86 3 6 97 334 37 48 445 48 59 556 593 63 667 74 74 778 85 85 889 96 963 3