A WEAK-(p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES

Similar documents
Fractional integral operators on generalized Morrey spaces of non-homogeneous type 1. I. Sihwaningrum and H. Gunawan

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

GENERALIZED STUMMEL CLASS AND MORREY SPACES. Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano, and Hitoshi Tanaka

arxiv: v1 [math.ca] 29 Dec 2018

Good Lambda Inequalities and Riesz Potentials for Non Doubling Measures in R n

SINGULAR INTEGRALS ON SIERPINSKI GASKETS

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

INEQUALITIES ASSOCIATED TO RIESZ POTENTIALS AND NON-DOUBLING MEASURES WITH APPLICATIONS MUKTA BAHADUR BHANDARI

HARMONIC ANALYSIS. Date:

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

The Australian Journal of Mathematical Analysis and Applications

Wavelets and modular inequalities in variable L p spaces

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN

A NOTE ON WEAK CONVERGENCE OF SINGULAR INTEGRALS IN METRIC SPACES

In this note we give a rather simple proof of the A 2 conjecture recently settled by T. Hytönen [7]. Theorem 1.1. For any w A 2,

Weighted restricted weak type inequalities

Weighted norm inequalities for singular integral operators

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

arxiv: v3 [math.ca] 9 Apr 2015

引用北海学園大学学園論集 (171): 11-24

Inclusion Properties of Weighted Weak Orlicz Spaces

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

arxiv: v1 [math.fa] 2 Jun 2012

BOUNDEDNESS OF THE FRACTIONAL MAXIMAL OPERATOR IN GENERALIZED MORREY SPACE ON THE HEISENBERG GROUP

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

Lebesgue s Differentiation Theorem via Maximal Functions

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

x i y i f(y) dy, x y m+1

Nonlinear aspects of Calderón-Zygmund theory

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function.

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Commutators of Weighted Lipschitz Functions and Multilinear Singular Integrals with Non-Smooth Kernels

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio

Sharp Bilinear Decompositions of Products of Hardy Spaces and Their Dual Spaces

SOBOLEV EMBEDDINGS FOR VARIABLE EXPONENT RIESZ POTENTIALS ON METRIC SPACES

X. Tolsa: Analytic capacity, the Cauchy transform, and nonhomogeneous 396 pp

ATOMIC DECOMPOSITIONS AND OPERATORS ON HARDY SPACES

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( )

WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS

Carlos Pérez University of the Basque Country and Ikerbasque 1 2. School on Nonlinear Analysis, Function Spaces and Applications T re st, June 2014

SHARP BOUNDS FOR GENERAL COMMUTATORS ON WEIGHTED LEBESGUE SPACES. date: Feb

Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator

JOURNAL OF FUNCTIONAL ANALYSIS, 2, 213 (2004)

One-sided operators in grand variable exponent Lebesgue spaces

A Note on Inclusion Properties of Weighted Orlicz Spaces

1. Introduction. SOBOLEV INEQUALITIES WITH VARIABLE EXPONENT ATTAINING THE VALUES 1 AND n. Petteri Harjulehto and Peter Hästö.

ON THE BEHAVIOR OF THE SOLUTION OF THE WAVE EQUATION. 1. Introduction. = u. x 2 j

SHARP WEIGHTED BOUNDS FOR FRACTIONAL INTEGRAL OPERATORS

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009

Sobolev embeddings for variable exponent Riesz potentials on metric spaces

RECTIFIABILITY OF MEASURES WITH BOUNDED RIESZ TRANSFORM OPERATOR: FROM SINGULAR OPERATORS TO GEOMETRIC MEASURE THEORY

A NOTE ON WAVELET EXPANSIONS FOR DYADIC BMO FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE

In this work we consider mixed weighted weak-type inequalities of the form. f(x) Mu(x)v(x) dx, v(x) : > t C

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations

Integral Operators of Harmonic Analysis in Local Morrey-Lorentz Spaces

Continuity of weakly monotone Sobolev functions of variable exponent

Decompositions of variable Lebesgue norms by ODE techniques

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

Function spaces with variable exponents

ON A LITTLEWOOD-PALEY TYPE INEQUALITY

Regularizations of Singular Integral Operators (joint work with C. Liaw)

M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe

HIGHER INTEGRABILITY WITH WEIGHTS

Hardy-Littlewood maximal operator in weighted Lorentz spaces

A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM

LOUKAS GRAFAKOS, LIGUANG LIU, DIEGO MALDONADO and DACHUN YANG. Multilinear analysis on metric spaces

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen

A characterization of the two weight norm inequality for the Hilbert transform

On the existence of principal values for the Cauchy integral on weighted Lebesgue spaces for non-doubling measures.

JUHA KINNUNEN. Harmonic Analysis

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors

ON ORLICZ-SOBOLEV CAPACITIES

DOMAINS OF DIRICHLET FORMS AND EFFECTIVE RESISTANCE ESTIMATES ON P.C.F. FRACTALS. 1. Introduction

VARIABLE EXPONENT TRACE SPACES

The Hilbert Transform and Fine Continuity

LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES. Fon-Che Liu Wei-Shyan Tai. 1. Introduction and preliminaries

Measure density and extendability of Sobolev functions

Both these computations follow immediately (and trivially) from the definitions. Finally, observe that if f L (R n ) then we have that.

1 Introduction ON AN ESTIMATE OF CALDERÓN-ZYGMUND OPERATORS BY DYADIC POSITIVE OPERATORS ANDREI K. LERNER

On the role of Riesz potentials in Poisson s equation and Sobolev embeddings

Erratum to Multipliers and Morrey spaces.

Research Article Boundedness of Oscillatory Integrals with Variable Calderón-Zygmund Kernel on Weighted Morrey Spaces

Math. Res. Lett. 16 (2009), no. 2, c International Press 2009 LOCAL-TO-GLOBAL RESULTS IN VARIABLE EXPONENT SPACES

FUNCTION SPACES WITH VARIABLE EXPONENTS AN INTRODUCTION. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano. Received September 18, 2013

Characterizations of Function Spaces via Averages on Balls

arxiv: v1 [math.ap] 18 May 2017

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

BOUNDEDNESS OF SUBLINEAR OPERATORS GENERATED BY CALDERÓN-ZYGMUND OPERATORS ON GENERALIZED WEIGHTED MORREY SPACES

Local maximal operators on fractional Sobolev spaces

1 Riesz Potential and Enbeddings Theorems

CHARACTERIZATION OF ORLICZ-SOBOLEV SPACE

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

arxiv: v1 [math.fa] 20 Dec 2018

Transcription:

JMP : Volume 8 Nomor, Juni 206, hal -7 A WEAK-p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES Idha Sihwaningrum Department of Mathematics, Faculty of Mathematics and Natural Siences Jenderal Soedirman University Email : idha.sihwaningrum@unsoed.ac.id Abstract. This paper presents a weak-p, q) inequality for fractional integral operator on Morrey spaces over metric measure spaces of nonhomogeneous type. Both parameters p and q are greater than or equal to one. The weak-p, q) inequality is proved by employing an inequality involving maximal operator on the spaces under consideration. Keywords: Fractional integral operator, maximal operator,morrey spaces, nonhomogeneous, weak type inequality.. Introduction Fractional integral operator, which is firstly defined by Hardy and Littlewood, 927), is an inverse for a power of the Laplacian operator on Euclidean spaces. This operator is also called the Riesz potential. Riesz 938) introduced the potential as an extension of the Newtonian potential. Nowadays, it can be found that the works on fractional integral operator have been developed in some directions. For examples, Adams, 975), Nakai, 994), Kurata, et al., 2002), Gunawan and Shwaningrum, 203) and Eridani, et al., 204) provided some results on homogeneous type spaces; meanwhile García-Cuerva and Martell, 200), Liu and Shu, 20), Sihwaningrum, et al., 202), and Sawano an Shimamura, 203) provided some results on nonhomogeneous type spaces. A metric measure space, d, µ) is a homogeneous type space if the Borel measure µ satisfies the doubling condition, that is there exists a positive constant C such that for every ball Ba, r) the condition µbx, 2r)) CµBx, r)) ) holds. In equation ), a is the center of the ball and r is the radius of the ball. If the doubling condition does not hold, then we have a metric measure space of nonhomogeneous type. In spaces of nonhomogeneous type, the doubling condition can be replaced by the growth condition µbx, r)) C r n 2) where n is less than or equal to the dimension of the metric measure spaces. The action on the spaces of nonhomogeneous type goes back to the works of Nazarov, et al., 998), Tolsa, 998), and Verdera, 2002).

2 I. SIHWANINGRUM In the metric measure spaces of nonhomogeneous type, García-Cuerva and Gatto, 2004) defined the fractional integral operator I α to be I α fx) := fy). 3) The fractional integral operator equation 3)) has been proved to satisfy the weak-, q) an inequality in Lebesgue spaces over metric measure spaces of nonhomogeneous type García-Cuerva and Gatto, 2004), in Morrey spaces over metric measure of non homogenenous type Sihwaningrum, 206) and in generalized Morrey spaces over metric measure spaces of non homogeneous type Sihwaningrum, et al., 205). This kind of weak type is also established in Sihwaningrum and Sawano, 203) for another version of fractional integral operator. The weak inequalities measure the size of the distribution function Duoandikoetxea, 200). As Hakim and Gunawan, 203) had a result on the weak-p, q) inequality where p q < ) for fractional integral operator in the generalized Morrey spaces over Euclidean spaces of nonhomogeneous type, the results on the weak-, q) inequality on Morrey spaces over metric measure spaces of nonhomogeneous type will extended in this paper into a weak-p, q) inequality. Morrey spaces were first introduced by Morrey, 940); and in this paper, Morrey spaces over metric spaces of non homogeneous type L p,λ µ) := L p,λ, µ) for p < and 0 λ < n) contain all functions in L p loc in which f p L p,λ µ) := sup Bx,r) µbx, 2r))) λ Bx,r) ) /p <. 2. Main Results To prove the weak-p, q) inequality of fractional integral operator on Morrey spaces over metric measure spaces of nonhomogeneous type, we need the following inequality which involves maximal operator M. This operator is defined by Mfx) := sup x suppµ)) 4) r>0 µbx, 2r)) Bx,r) Sawano, 2005). Some properties of maximal operator M can be found for example in Terasawa, 2006). Note that from now on, C denotes different positive constants. Theorem 2.. Let χ Ba,r) be the characteristic function of ball Ba, r). If f L p,λ µ) for p < and 0 < λ <, then for any ball Ba, r) on we have Mχ Ba,r) Cr nλ f p L p,λ µ).

A WEAK-p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR 3 Proof. By applying the growth condition in equation 2), for any function f in L p,λ µ) we get Mχ Ba,r) Ba,r) C Mχ Ba,r) + Ba,r) + j= 2 jn j= Ba,2 j+ r)\ba,2 j r) Ba,2 j+ r)\ba,2 j r) C f p µba, 2r)) λ + 2 jn µba, 2 j+2 r)) λ L p,λ µ) j= C f p 2r) nλ + 2 jn 2 j+2 r) nλ L p,λ µ) j= = Cr nλ f p + L p,λ µ) j= 2 jn λ). Mχ Ba,r) Since λ > 0, then j= 2 jn λ) is convergent. As a result, Mχ Ba,r) Cr nλ f p L p,λ µ). Therefore, the proof is complete. Having Theorem 2., we are now able to get the weak-p, q) inequality for fractional integral operator I α. Theorem 2.2. Let 0 < α < n, p q <, and 0 λ < αp q = p α n λ), then n. If ) q f L µ {x Ba, r) : I α fx) > }) Cr nλ p,λ µ). Proof. For any positive R, we can write I α fx) as I α fx) Bx,R) = A + A 2. + \Bx,R)

4 I. SIHWANINGRUM An estimate for A 2 is A 2 = dx,y) R Bx,2 j+ R)\Bx,2 j R) 2 j R) 2 2n 2 j R) α 2 j+2 R) n Bx,2 j+ R) Bx,2 j+ R). Since µ satisfies the growth measure condition, then R α 2 jα A 2 µbx, 2 j+2 R)) Bx,2 j+ R) ) /p CR α 2 jα µbx, 2 j+2 R)) Bx,2 j+ R) = CR α 2 jα µbx, 2 j+ R)) /p µbx, 2 j+2 R)) λ/p µbx, 2 j+2 R)) λ CR α f L p,λµ) 2 j+ R ) n /p) 2 j+2 R ) nλ/p CR α+nλ/p /p) f L p,λ µ) 2 jα+nλ/p /p)). By using the assumption 0 λ < αp n, we find that convergent; and hence A 2 CR α+ n p λ ) f L p,λ µ). Bx,2 j+ R) Bx,2 j+ R) 2jα+nλ/p /p)) is Now, an estimate for A is given by ) /p ) /p A Bx,R) Bx,R) ) /p µbx, ) /p R)) Bx,R) R ) /p ) CR n /p Bx,R) R ) /p CR α /p). Bx,R) ) /p ) /p If we let CR α+ n p λ ) f L p,λ µ) = 2,

A WEAK-p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR 5 then A 2 2 and { x Ba, r) : A 2 > 2 } =. As a result, µ {x Ba, r) : I α fx) > }) { µ x Ba, r) : A > }) { 2 = µ x Ba, r) : A > }) 2 = µ x Ba, r) : CRα /p) { = µ x Ba, r) : C R α /p)) p p = C R α /p)) p p CRαp ) p CRαp ) p Bx,R) Ba,r) Bx,R) { + µ x Ba, r) : A 2 > }) 2 Bx,R) > Bx,R) By,R) ) /p > 2 }) ) p 2CR α /p) dµx) χ Ba,r) x) χ Ba,r) x) dµx) R α Mχ Ba,r) y). Furthermore, Theorem 2. enables us to find dµx) ) µ {x Ba, r) : I α fx) > }) CRαp ) R α r nλ p f p L p,λ µ) As q = p α n λ) give us = Cr nλ R α f L p,λ µ) ) p. R α ) p ) q f L p,λ µ) f L = CR n λ) p,λ µ) =, then we end up with µ {x Ba, r) : I α fx) > }) Cr nλ f L p,λ µ) This is our desired inequality. ) q. 3. Concluding Remarks The results in this paper can be reduced to the result in Sihwaningrum, 206) if p =. Besides, the proof of the weak-p, q) inequality for fractional integral operator on Morrey spaces over metric measure spaces of nonhomogeneous type can be found by using other methods. One of the common methods is a proof by using Hedberg type inequality. Acknowledgments. This paper is a result of Fundamental Research Program 205, Directorate General of Higher Education, Indonesia, No. 20/UN23.4/PN/205.

6 I. SIHWANINGRUM REFERENCES Adams, D., A Note on Riesz Potentials, Duke Math. J., 42 975), 765 778. Duoandikoetxea, J., Humpreys, J., et al. ed), Fourier Analysis, The American Mathematical Society, USA, 200, 28. Eridani, Gunawan, H., Nakai, E., and Sawano, Y., Characterization for the Generalized Fractional Integral Operators on Morrey Spaces, J. Math. Inequal. Appl., 72) 204), 76-777 García-Cuerva, J. and Gatto, A.E., Boundedness Properties of Fractional Integral Operators Associated to Non-doubling Measures, Studia Math., 62 2004), 245 26. García-Cuerva, J. and Martell, J.M., Two Weight Norm Inequalities for Maximal Operators and Fractional Integrals on Non-homogeneous Spaces, Indiana Univ. Math. J., 50 200), 24 280. Gunawan, H and Sihwaningrum, I., Multilinear Maximal Functions and Fractional Integrals on Generalized Morrey Spaces, J. Math. Anal, 43) 203), 23 32. Hakim, D.I. and Gunawan, H., Weak p, q) inequalities for fractional integral operators on generalized Morrey spaces of Non-homogeneous Type, Math. Aeterna, 33) 203), 6 68. Hardy, G.H. and Littlewood, J. E., Some properties of fractional Integrals, Math. Zeit., 27 927), 565 606. Kurata, K., Nishigaki, S., and Sugano, S., Boundedness of Integral Operators on Generalized Morrey Spaces and Its Application to Schrödinger Operators, Proc. Amer. Math. Soc., 28 2002), 25 34. Liu, G. and Shu, L., Boundedness for the Commutator of Fractional Integral on Generalized Morrey Space in Nonhomogenous Space, Anal. Theory Appl., 27 20), 5 58. Nazarov, F., Treil, S., and Volberg, A., Weak Type Estimates and Cotlar Inequalities for Calderón-Zygmund Operators on Nonhomogeneous Spaces, Internat. Math. Res. Notices, 9 998), 463 487. Morrey, C.B., Functions of Several Variables and Absolute Continuity, Duke Math. J., 6 940), 87 25. Nakai, E., Hardy-Littlewood Maximal Operator, Singular Integral Operators, and the Riesz Potentials on Generalized Morrey Spaces, Math. Nachr., 66 994), 95 03. Sawano, Y., Sharp Estimates of the Modified Hardy-Littlewood Maximal Operator on the Nonhomogeneous Space via Covering Lemmas, Hokkaido Math. J., 34

A WEAK-p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR 7 2005), 435 458. Sawano, Y. and Shimomura, T., Sobolev s Inequality for Riesz Potentials of Functions in Generalized Morrey Spaces with Variable Exponent Attaining the Value over Non-doubling Measure Spaces, J. Inequal. Appl., 203 203), 9. Sihwaningrum, I., Ketaksamaan Tipe Lemah untuk Operator Integral Fraksional di Ruang Morrey atas Ruang Metrik Tak Homogen, Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya KNPMP I), Universitas Muhammadiyah Surakarta, 206, 924 933 Sihwaningrum, I., Maryani, S., and Gunawan, H., Weak Type Inequalities for Fractional Integral Operators on Generalized Non-homogeneous Morrey Spaces, Anal. Theory Appl., 28) 202), 65 72. Sihwaningrum and Sawano,Y., Weak and Strong Type Estimates for Fractional Integral Operator on Morrey Spaces over Metric Measure Spaces, Eurasian Math. J., 4 203), 76 8. Sihwaningrum, I., Wardayani, A., and Gunawan, H., Weak Type Inequalities for Some Operators on Generalized Morrey Spaces Over Metric Measure Spaces, Austral. J. Math. Anal. Appl., 2 205), Issue, Art. 6, 9 pp. Terasawa, Y., Outer Measure and Weak Type, ) Estimates of Hardy-Littlewood Maximal Operators, J. Inequal. and Appl., 206 2006), Article ID 5063, 3pp Tolsa,., Cotlar Inequality without the Doubling Condition and Existence of Principal Values the Cauchy Integral of Measures, J. Reine Angew. Math., 502 998), 99 292. Verdera, J., The Fall of the Doubling Conditions in Calderón-Zygmund Theory, Publ. Mat., Vol. Extra 2002) 275 292.