ESTABLISHING A GEODETIC CONTROL NETWORK TO SERVE AS PHOTOGRAMMETRIC CONTROL FOR A COUNTYW IDE GIS

Similar documents
Exploring the boundaries of your built and natural world. Geomatics

MODERNIZATION OF THE MUNICIPAL MAPPING USING HIGH END GNSS SYSTEM AND GIS SOFTWARE

GIS Geographical Information Systems. GIS Management

Desktop GIS for Geotechnical Engineering

IC ARTICLE LAND SURVEYORS

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

The State of Michigan Transportation Asset Management Council 2006 PASER Survey Of Shiawassee County

Oregon Department of Transportation. Geographic Information Systems Strategic Plan

NAVAJO NATION PROFILE

CHAPTER 22 GEOGRAPHIC INFORMATION SYSTEMS

Techniques for Science Teachers: Using GIS in Science Classrooms.

GIS Workshop Data Collection Techniques

THE SPATIAL DATA WAREHOUSE OF SEOUL

HORIZON 2030: Land Use & Transportation November 2005

Chapter 1 Overview of Maps

GEOGRAPHIC INFORMATION SYSTEMS Session 8

Land Navigation Table of Contents

UNITED NATIONS E/CONF.96/CRP. 5

Social Studies Grade 2 - Building a Society

E-Government and SDI in Bavaria, Germany

GEOMATICS SURVEYING AND MAPPING EXPERTS FOR OVER 35 YEARS

GIS ADMINISTRATOR / WEB DEVELOPER EVANSVILLE-VANDERBURGH COUNTY AREA PLAN COMMISSION

John Laznik 273 Delaplane Ave Newark, DE (302)

Author(s): Charles K. Cover, P.E. Federal Energy Regulatory Commission

Statewide Topographic Mapping Program

GEOMATICS. Shaping our world. A company of

GEOVEKST A Norwegian Program for Cost Sharing in Production, Updating and Administration of Geographic Data

geographic patterns and processes are captured and represented using computer technologies

Using PRISM Climate Grids and GIS for Extreme Precipitation Mapping

NOAA Surface Weather Program

Section 2. Indiana Geographic Information Council: Strategic Plan

State GIS Officer/GIS Data

Basic Principles of Surveying and Mathematics

PHOTOGRAMMETRY AND GIS TECHNOL 1 OGIES FOR MONITORING COASTAL EROSION ALONG DAR ES SALAAM COASTLINE. By: Z.Y Masele, S.D Mayunga1.

Analyzing Suitability of Land for Affordable Housing

ECONOMIC AND SOCIAL COUNCIL 13 July 2007

4 Survey Datums. 4.1 Horizontal Datum Policy SURVEY DATUMS SEPTEMBER 2006

Surveyors, Cartographers, Photogrammetrists, and Surveying and Mapping Technicians

STEREO ANALYST FOR ERDAS IMAGINE Stereo Feature Collection for the GIS Professional

2013 NASCIO Award Submission Category: Cross-Boundary Collaboration and Partnerships. Project Title: Public Safety and Enterprise GIS in Tennessee

Economic and Social Council

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

MetConsole AWOS. (Automated Weather Observation System) Make the most of your energy SM

Aerial Photography and Imagery Resources Guide

Key Steps for Assessing Mission Critical Data for An ebook by Geo-Comm, Inc.

JOB TITLE: CURRENT CLASSIFICATION/GRID POSITION # GIS Coordinator AD Grid Level 6(c) # 420

Aerial Photography and Imagery Resources Guide

Great Lakes Update. Geospatial Technologies for Great Lakes Water Management. Volume 149 October 4, US Army Corps of Engineers Detroit District

Monmouth County Adam Nassr (Partner: Brian Berkowitz, Ocean County)

D2E GIS Coordination Initiative Functional Transformation Kick-Off Meeting

RESOLUTION NO

NCTCOG Regional GIS Meeting 6-Years and Going Strong. May 15, 2018 hosted by: Tarrant County

Creating a Staff Development Plan with Esri

The Saudi Experience

Country Report on SDI Activities in Singapore *

GEOGRAPHIC INFORMATION SYSTEM ANALYST I GEOGRAPHIC INFORMATION SYSTEM ANALYST II

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore

Risk Analysis for Assessment of Vegetation Impact on Outages in Electric Power Systems. T. DOKIC, P.-C. CHEN, M. KEZUNOVIC Texas A&M University USA

INDOT Office of Traffic Safety

MALDIVES. Regional Expert Workshop On Land Accounting For SDG Monitoring & Reporting (25-27 th Sept 2017) - Fathimath Shanna, Aishath Aniya -

Construction Project Data Management

Department of Civil and Environmental Engineering. CE Surveying

Geospatial natural disaster management

GIS INTEGRATION OF DATA COLLECTED BY MOBILE GPSSIT

Weather Information for Surface Transportation (WIST): Update on Weather Impacts and WIST Progress

GIS Needs Assessment. for. The City of East Lansing

Applications of GIS in Electrical Power System

The Use of Geographic Information Systems (GIS) by Local Governments. Giving municipal decision-makers the power to make better decisions

Snow and Ice Control POLICY NO. P-01/2015. CITY OF AIRDRIE Snow and Ice Control Policy

E Geographic Information System. Created By: Freda Rocker Pearl River County Mapping

No. of Days. Building 3D cities Using Esri City Engine ,859. Creating & Analyzing Surfaces Using ArcGIS Spatial Analyst 1 7 3,139

A New Co-ordinate System for Sweden

Brazil Paper for the. Second Preparatory Meeting of the Proposed United Nations Committee of Experts on Global Geographic Information Management

LRS Task Force June 13, REVISION HISTORY

Oakland County Parks and Recreation GIS Implementation Plan

What is GIS? Introduction to data. Introduction to data modeling

Chapter : 1 : Introduction of GIS

Natural and Human Influences on Flood Zones in Wake County. Georgia Ditmore

The Role of Urban Planning and Local SDI Development in a Spatially Enabled Government. Faisal Qureishi

FHWA GIS Outreach Activities. Loveland, Colorado April 17, 2012

GIS-T 2010 Building a Successful Geospatial Data Sharing Framework: A Ohio DOT Success Story

A REVIEW OF RADIO ASTRONOMY IN THE USA I. INTRODUCTION

EXPERIENCE WITH HIGH ACCURACY COUNTY DTM MAPPING USING SURVEYING, PHOTOGRAMMETRIC, AND LIDAR TECHNOLOGIES - GOVERNMENT AND CONTRACTOR PERSPECTIVES

SDI Development in the Russian Federation

Land Administration and Cadastre

Programme Study Plan

2018 NASCIO Award Submission Category: Cross-Boundary Collaboration and Partnerships. Project Title: Tennessee Wildfires: A Coordinated GIS Response

Combining Geospatial and Statistical Data for Analysis & Dissemination

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University

Emergency Planning. for the. Democratic National. Convention. imaging notes // Spring 2009 //

GIS for the Beginner on a Budget

Opportunities and Priorities in a New Era for Weather and Climate Services

DATA UPDATING METHODS FOR SPATIAL DATA INFRASTRUCTURE THAT MAINTAIN INFRASTRUCTURE QUALITY AND ENABLE ITS SUSTAINABLE OPERATION

McHenry County Property Search Sources of Information

Indiana GIS Resources

STATE GEOGRAPHIC INFORMATION DATABASE

Committee Meeting November 6, 2018

Haslemere Design Statement

BUILDING AN ACCURATE GIS

GIS = Geographic Information Systems;

Transcription:

1992 PLSO Conference 61 ESTABLISHING A GEODETIC CONTROL NETWORK TO SERVE AS PHOTOGRAMMETRIC CONTROL FOR A COUNTYW IDE GIS By M ichael J. Stanoikovich M anager of Geodetic Services W oolpert G eographic Inform ation Services Division BIOGRAPHICAL SKETCH As manager of geodetic services for Woolpert Geographic Information Services Division, Mr. Stanoikovich is responsible for overseeing daily geodetic operations. He specializes in projects for infrastructure applications, projects that require significant ground control, and other field surveying services such as GPS satellite surveying. He ensures that projects are performed according to client requirements and completed within the specified schedule and budget. His experience includes Global Positioning System (GPS) surveys; photogrammetric control; and utility, boundary, topographic, and geodetic ground control surveys. Mr. Stanoikovich has performed geodetic services for the City of Cincinnati, Ohio; the Cincinnati Area Geographic Information System (CAGIS); Delaware County, Ohio; Fairfield County, Ohio; Butler County, Ohio; Lorain County, Ohio; Ottawa County, Ohio; Geauga County, Ohio; Sandusky County, Ohio; Bartholomew County, Indiana; and other clients in the United States and South America. Woolpert is a multidisciplinary firm with capabilities in engineering, photogrammetry, architecture, planning, and landscape architecture. These capabilities enable Woolpert to provide Geographic Information Services, Public Works and Infrastructure Services, Aviation Services, and Environmental Services. The firm, which has 13 offices in nine states and employs more than 500 people, has been in business since 1911 and is based in Dayton, Ohio. ABSTRACT The surveying industry has seen many changes in the past decade. The total station was a great addition to the profession, along with sophisticated data collectors and unmanned instruments that use radio-based tracking and servo motors. But perhaps the most important addition to the geodetic surveying community was the introduction of the Navstar Global Positioning System (GPS), allowing the surveying industry to establish affordable, high-accuracy geodetic control. These new technological developments, along with the skills of trained professionals, will aid in the establishment of a geodetic/photogrammetric control network for cities, states, and counties that plan to implement a Geographic Information System (GIS) or some other type of mapping project. Woolpert GIS Establishing a Geodetic Control Network January 1992

1992 PLSO Conference 62 INTRODUCTION With the term GIS becoming as common among government agencies as elections, the need for knowledge and understanding of the GIS concept becomes more important. You get what you put into it holds true in life as well as in a GIS of any type. Because so many agencies are getting involved with GIS technology, it is important to understand the vital role played by a control network in planning and creating a GIS. This paper examines three categories o f control networks by evaluating their relative costs, accuracies, and recommended applications. It also provides step-by-step guidelines for planning a GPS control network. THREE TYPES OF NETWORKS The foundation of the GIS is its geodetic control base. This framework o f geodetic positions establishes the accuracy to which all other data is related. For a control network that serves as the basis of a GIS, the old adage about a chain and its weakest link is very appropriate: The GIS itself can only be as accurate as its control network. No amount o f software and hardware enhancement can compensate for control that is not accurate enough for the required uses. There are three types of GPS control networks: surveying/engineering, photogrammetric, and dual-purpose. Surveying/Engineering GPS C ontrol Network This network consists of a series of stations that are usually laid out in a grid-type pattern (however, a rectangular grid is not necessary). Many city and county agencies choose this method, using sectionalized land corners as the station grid. This method has been used by many counties throughout the U.S. and has been proven as a strong reference base to support a GIS. Franklin County, Ohio, is one o f the best examples of this type of network in the state of Ohio. However, one o f the drawbacks of this system is that it is expensive to create. Section corners must be located or re-established, permanent monuments must be placed at the location, and, if the corner falls in a roadway or a developed area, some type of monument box and/or protective feature must be added to ensure its stability. Also, it is important to consider the safety issues involved in trying to occupy stations situated in the roadway. This applies both to GPS crews establishing the position o f the station and to surveyors using the station for other surveying purposes. Another network that falls in this category is one that consists of stations placed either in municipal parks and recreation areas or on the grounds of community school board property. This type of geodetic station layout has been used quite effectively by the City of Cincinnati, Ohio. This method has several advantages, one of which is the unlikelihood o f disturbance to the station due to construction. Another is that the areas Woolpert CIS Establishing a Geodetic Control Network January 1992

1992 PLSO Conference 63 are easily accessible and depending on the neighborhood are usually safe to occupy even during nighttime observation sessions. This network is considerably less expensive to set up than the first type of network, but the GPS portion of the project is equivalent. Following the Federal Geodetic Control Committee s Geometric G eodetic Accuracy Standards and Specifications f o r Using GPS R elative Positioning Techniques (Version 5.0 or the latest version), accuracy standards for this type of network should not be less than 1 part per 100,000. Photogram m etric Control Network When GPS control is needed to support a digital mapping project, orthophotography, or both, control location is determined by the needs of the photogrammetrist. Most photogrammetric firms that perform fully analytic triangulation use a perimeter control pattern. This approach allows the photogrammetrist to control the mapping project from high-altitude photography, which minimizes the amount of horizontal and vertical control needed. This yields an acceptable fully analytic triangulation result without deteriorating the accuracy of the project. Some of the points are positioned along the sides of the project (parallel to the flight line o f the aircraft). The majority of the stations, however, are placed along the sides o f the project that contain the beginning and end of the flight lines. This layout offers the lowest-cost alternative for obtaining photogrammetric control. However, it does not meet the requirements of a strong geodetic control foundation to support and maintain a GIS in the years ahead. Another drawback to this network is that the accuracy needed to support the mapping portion of the GIS is not sufficient to support the surveying/engineering demands of a GIS. For these reasons we will discuss the third and perhaps the most versatile type o f control network. Dual-Purpose Geodetic/Photogrammetric C ontrol Network This type of control network supports a variety of users. One of its greatest assets is that it meets both the photogrammetric needs of a GIS and the higher-accuracy control needs of the surveying/engineering community. This is especially important because the dual-purpose type of network can be significantly less expensive than the surveying/engineering type, and costs can often be distributed among the participants in a GIS project. Accuracy requirements for this type of network should not be less than 1 part per 100,000 (this accuracy can be achieved easily using GPS techniques). The network pattern is laid out in much the same manner as the photogrammetric control network. However, in the dual-purpose network, inner control is added as well as possible station pairs or station azimuths. If lower-altitude photography is needed for Wootpert GIS Establishing a Geodetic Control Network January 1992

1992 PLSO Conference 64 urban/suburban areas, additional control should be laid out in these areas. This will meet the needs of the photogrammetrist while adding to the density of the control pattern. If only one scale of photography is designated, it is still advantageous to place inner network control near areas of expansion and growth as well as small rural communities while still maintaining some type o f rectangular grid pattern. Once the network pattern has been established, further densification can be made either through terrestrial techniques or through GPS. But whatever method of densification is chosen, this method accommodates both the GIS o f today and the GIS o f tomorrow. In fact, it is very important to plan for the future needs o f a GIS. Continuous updates will be needed in areas of expansion and growth. These updates will require new photography, geodetic control, and mapping. Previously established control stations can be targeted to help support the analytic triangulation phase o f the update process. In the GIS o f the future, all boundary surveys, construction projects, and so on, should relate to the coordinate system of the geodetic control network. This process has the benefit o f adding data that is far more accurate than the original digitized land information data. Through methods that use the dual-purpose control network, the accuracy o f the overall GIS can be efficiently and cost-effectively enhanced. This means that the dual-purpose network is an investment in the future, and represents the best value for the GPS dollar spent. PLANNING A CONTROL NETW ORK There are several questions to address when planning a control network: 1. What are the intended uses or applications of the network? This step may require meeting with all potential users to determine their level of interest, their requirements, and their existing information base. It may also be the ideal time to discuss the potential for budgetary commitment. 2. What are the accuracy requirements of the network? The accuracy used will probably be influenced by factors that include planned uses and available budget. The Federal Geodetic Control Committee (FGCC) defines three broad categories of accuracy for geodetic control networks. The table on page 5 provides a brief overview of these categories and shows how they relate to the three types of networks described earlier. For more detailed specifications on these types of control, see the FGCC publication G eom etric G eodetic Accuracy Standards and Specifications f o r Using GPS R elative Positioning Techniques, which was used as a resource for the information presented here. Woolpert GIS Establishing a Geodetic Control Network January 1992

1992 PLSO Conference 65 With GPS capabilities, no control should be established with accuracies less than 1 part per 50,000. In fact, it is recommended to require accuracies of not less than 1 part per 100,000. In most cases, the cost difference between the two accuracy levels is minimal. T y p e o f M i n i m u m C o n t r o l D e s c r i p t i o n A c c u r a c y R e c o m m e n d e d U s e s N e t w o r k First-order horizontal 1 part per 100,000 Called the Primary Surveying/ control network (1:100,000) Horizontal Control, this is the framework for the National Horizontal Control Network. It is recommended for metropolitan area surveys and scientific studies. Engineering GPS Dual-Purpose Geodetic/ Photogrammetric Second-order horizontal control network Class I: 1 part per 50,000 (1:50,000) Class II: 1 part per 20,000 (1:20,000) Class I, Secondary Horizontal Control, is an area control that strengthens the National Network. It is recommended for subsidiary metropolitan control. Class II, Supplemental Horizontal Control, is used to establish area control that contributes to but is supplemental to the National Network. Photogrammetric Third-order horizontal Class I: 1 part Called Local Horizontal Low-end control network per 10,000 (1:10,000) Class II: 1 part per 5,000 (1:5,000) Control, this pertains to general control surveys referenced in the National Network. It is recommended for local control surveys. Photogrammetric 3. What is the available budget for the project? Using the budget information gathered from the users identified in answer to question 1, determine the available budget for the project. 4. Which of the three networks will be established? Based on information about applications, accuracy requirements, and available budget, the next step is to choose the type of network. Taking the time to answer Woolpert CIS Establishing a Geodetic Control Network. January 1992

1992 PLSO Conference 66 the first three questions carefully should make the choice of network fairly simple and straightforward. 5. Should the network data be included in the National Geodetic Reference System (called blue-booking )? This question also concerns the issue of accuracy. It is recommended that the initial network information be submitted for inclusion into the National Geodetic Reference System (blue-booking), but only if the survey meets the above accuracies. One o f the many advantages to blue-booking the control data is this: Once the data has been accepted by the National Geodetic Survey (NGS), it is maintained, updated, and published by the NGS and is not affected by political restructuring in the years to follow. 6. What are the forecasted costs of the project, and how can the costs be minimized? Now that many facets o f the project have been decided, it is possible to forecast the project budget. For this step, it is important to understand that costs can vary greatly due to the demands and constraints of the project, and no hard-and-fast price per station can be set for any one project. In these days o f tighter budgets, cost control is critical. Although final project costs vary considerably, there are many ways to minimize costs. Perhaps the most efficient method o f cutting the final cost of a project is for the agency itself to complete the station locations, reconnaissance, visibility studies, monumenting, and referencing. When these tasks are performed by the agency, the savings can reduce the final project cost by as much as 50 percent. 7. Who can provide assistance in planning the project? Two valuable sources of assistance are contractors and the NGS itself. Many contractors offer geodetic services, and most of them are glad to assist in planning a geodetic control network that will meet the agency s needs. For preliminary ideas and information, contact the NGS advisor in your state. (If one is not available, contact the NGS headquarters in Rockville, Maryland.) An NGS advisor can provide valuable information about similar projects taking place in your state. Contact the agencies identified for ideas that will help you determine your final plan. CONCLUSION The three types of GPS control networks discussed provide different levels of accuracy, serve different types of applications, and require different budget commitments. At the high end of the scale is the surveying/engineering network, which is expensive but extremely accurate. It serves as a strong reference base for a GIS and future surveying and engineering needs. At the other end of the spectrum is the photogrammetric control network, which represents a low-cost approach; however, the accuracy is insufficient Woolpert Establishing a Geodetic Control Network January 1992

1992 PLSO Conference 67 for many uses of a GIS. A good compromise is the dual-purpose network, which provides sufficient accuracy for surveying/engineering applications at a lower cost. Careful planning is the key to choosing the right type of network. Answering the questions about applications, accuracy requirements, and potential budget should guide the choice of network. Then with the type of network decided, answers to questions about blue-booking, projected costs, and sources of planning assistance can help ensure the success of the overall project. Finally, when initiating a countywide or citywide control network, the agency should remember that the actual GPS portion of the project is only part of the total network cost. When implemented properly, the network will meet the needs of all area GIS users well into the 21st century. BIBLIOGRAPHY Federal Geodetic Control Committee. G eom etric G eodetic Accuracy Standards and Specifications fo r Using GPS Relative Positioning Techniques. Version 5.0, August 1, 1989. Federal Geodetic Control Committee. H orizontal Control D ata. Vol. 1 of Input Formats and Specifications o f the N ational G eodetic Survey D ata Base. January 1989 (blue-booking). RESOURCES FOR ADDITIONAL INFORM ATION Mr. David A. Conner Ohio State Geodetic Advisor National Geodetic Survey c/o Center for Mapping 1212 Kinnear Road Columbus, Ohio 43212 National Geodetic Information Branch N/CG174 Rockwall Building, Room 24 National Geodetic Survey National Oceanic and Atmospheric Administration Rockville, Maryland 20852 Woolpert GIS Establishing a Geodetic Control Network January 1992