Astronomy 421. Lecture 23: End states of stars - Neutron stars

Similar documents
University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 19.

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

ASTR 200 : Lecture 20. Neutron stars

21. Neutron Stars. The Crab Pulsar: On & Off. Intensity Variations of a Pulsar

Ch. 16 & 17: Stellar Evolution and Death

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Comparing a Supergiant to the Sun

Degenerate Matter and White Dwarfs

Physics HW Set 3 Spring 2015

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Stars with Mⵙ go through two Red Giant Stages

Neutron Stars. Neutron Stars Mass ~ 2.0 M sun! Radius ~ R sun! isolated neutron stars first seen only recently (1997)

Supernovae, Neutron Stars, Pulsars, and Black Holes

The Stellar Graveyard Neutron Stars & White Dwarfs

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Notes Chapter 13.notebook. April 11, 2014

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Astro 1050 Fri. Apr. 10, 2015

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

The Bizarre Stellar Graveyard

Death of stars is based on. one thing mass.

For instance, due to the solar wind, the Sun will lose about 0.1% of its mass over its main sequence existence.

Neutron Stars. Melissa Louie

Astronomy 114. Lecture 22: Neutron Stars. Martin D. Weinberg. UMass/Astronomy Department

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Protostars evolve into main-sequence stars

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Evolution of High Mass stars

The Stellar Graveyard

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14: The Bizarre Stellar Graveyard

The Nature of Pulsars! Agenda for Ast 309N, Nov. 1. To See or Not to See (a Pulsar) The Slowing & Fading of Pulsars!

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Life and Evolution of a Massive Star. M ~ 25 M Sun

First: Some Physics. Tides on the Earth. Lecture 11: Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes A2020 Prof. Tom Megeath. 1.

Astronomy Ch. 22 Neutron Stars and Black Holes. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Death of Stars Part II Neutron Stars

Dead & Variable Stars

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

Mass loss from stars

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

THIRD-YEAR ASTROPHYSICS

The dying sun/ creation of elements

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Chapter 18 The Bizarre Stellar Graveyard

Termination of Stars

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

1. Convective throughout deliver heat from core to surface purely by convection.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Neutron Stars. But what happens to the super-dense core? It faces two possible fates:

Stellar Astronomy Sample Questions for Exam 4

Supernova events and neutron stars

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Evolution of High Mass Stars

Planetary Nebulae evolve to White Dwarf Stars

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

READ: Chapter 11.1, 11.2 (11.2.1, only), 11.3(

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Stellar Evolution. Eta Carinae

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

NSCI 314 LIFE IN THE COSMOS

Fate of Stars. relative to Sun s mass

17.3 Life as a High-Mass Star

Heading for death. q q

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Nuclear Synthesis. PHYS 162 Lectures 10a,b 1

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box:

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

Objectives. HR Diagram

Accretion in Binaries

Starlight in the Night: Discovering the secret lives of stars

Neutron Stars, Black Holes, Pulsars and More

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Life of a High-Mass Stars

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Review Questions for the new topics that will be on the Final Exam

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

Pulsars - a new tool for astronomy and physics

Life and Death of a Star 2015

Study of Accretion Effects of Transients in LMXB System

Stellar Evolution - Chapter 12 and 13. The Lives and Deaths of Stars White dwarfs, neutron stars and black holes

Beyond Our Solar System Chapter 24

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Final States of a Star

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Chapter 13: The Stellar Graveyard

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Deaths of Stars 1

Transcription:

Astronomy 421 Lecture 23: End states of stars - Neutron stars 1

Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2

Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~ 10 18 kg m -3 (neutrons nearly touch each other) The support is provided by neutron degeneracy pressure. C&O describe a complex and uncertain structure. The interior is mostly neutrons, with outer crust of some iron nuclei and charged particles. There may be a core of pions and other subatomic particles. Predicted to exist in 1934 by Baade and Zwicky. Discovered as pulsars in 1967 by Bell. 3

The force of gravity at the surface is very strong: => An object dropped from a height of 1m would hit the surface at a velocity 0.6% of the speed of light. Must use general relativity to model correctly. Radius can be calculated analogously to WD radius (see C+O): The maximum mass that can be supported by neutron degeneracy is uncertain, but can be no more than 2.2-2.9 M (depending on rotation rate). 4

Conservation of angular momentum: A contraction of the core during the evolution means a very fast period P of rotation for neutron stars. For an iron core, typical values give If, when core was Earth-sized, P was similar to observed WD values (1000 s), then P NS 4 x 10-3 s. Neutron stars should be fast rotators. 5

Conservation of magnetic flux Another prediction: magnetic field strength x area conserved as core shrinks Difficult to know what B of iron core is! Take value for WD, which can range from 10T to 5x10 4 T (measured). With these values, we find that B NS could as high as 10 10 T, but 10 8 T is probably more typical. Compare this to the solar value, B ~10-4 T. Thus, neutron stars should have strong magnetic fields. 6

Pulsars Periodic sources, discovered at radio wavelengths by Bell in 1967. Now over 2000 known. Extremely regular, most have P ~ 0.25-2 sec. Some are measured to ~15 significant figures and rival the best atomic clocks on earth. They slow down, but very slowly: for most. Characteristic lifetime would correspond to ~10 7 years. First explanation as NS by Pacini 67, Gold 68 (Gold predicted ) 7

LWA Publication Highlights - 1 Crab Giant Pulses Ellingson et al. 2013, ApJ 768, p. 136 76 MHz 60 MHz 44 MHz 28 MHz

Science Crab Giant Pulses CGPs seen at a rate of ~10/hour ATSC 6 Flare ATSC 4 Flare Ellingson et al., ApJ

Science Crab Giant Pulses CGPs seen at a rate of ~10/hour Ellingson et al., ApJ

Millisecond Pulsars with LWA1 MSP J2145#0750 Dowell et al. 2013 ApJL, 775, L28 DM = 9.005 +/- 0.002 pc cm -3

LWA1 Pulsar Detections J0030+0451 B0031-07 B0138+59 B0320+39 B0329+54 B0450+55 B0525+21 B0531+21* B0809+74 B0818-13 B0823+26 B0834+06 B0919+06 B0943+10 B0950+08 B1133+16 B1237+25 B1508+55 B1540-06 B1541+09 B1604-00 B1612+07 B1642-03 B1706-16 B1749-28 B1822-09 B1839+56 B1842+14 B1919+21 B1929+10 B2020+28 B2110+27 J2145-0750 B2217+47 34 Pulsars detected (33 through pulsations, 1 through single pulses*) 2 MSPs detected Periods from 4.9ms to 4.3s

RRATS McLaughlin, Miller et al. 2013 in prep 13

Pulsar Distribution in Galactic Coordinates. Found mostly near the Galactic Plane. 14

Discovery of pulsar in the Crab nebula in 1968 confirmed it must be due to a neutron star, and these are a possible endpoint of massive star evolution. Several more associated with Supernova Remnants. Many pulsars have high velocities (few 100 km/s vs. ~30 km/s for normal stars) as expected if ejected from a SN explosion which is not fully symmetric. 15

Pulsar model Magnetic axis need not be aligned with rotation axis. Rapidly changing magnetic field near rotating pulsar induces a huge electric field at the surface: is the magnetic flux through a given area. The B field is strongest at the poles, thus the E field as well, about 10 14 Volts/m. => Charged particles drawn off surface at the poles. 16

At the surface: B-field e - γ-rays e + γ -> e + +e - e- γ-rays Electron-positron cascade Charged particles forced to follow the curved B-field => accelerated => radiate photons ( curvature radiation ). At first, there will be high energy γ-rays, which will interact and pair-produce more e - and e +. They will emit a continuous spectrum with a strong relativistic forward beaming effect into a narrow cone (e + accelerated back downward). Eventually particles lose energy and start to radiate brightly in radio waves. 17

Pulsar evolution Since they slow down with age, they should lose energy to power the emission. Probably born with P ~ several msec, die at ~ a few sec. Not clear how the emission mechanism turns off, but somehow associated with loss of rotational energy. Magnetic and electric fields may weaken, but highly uncertain. Millisecond pulsars thought to be old neutron stars in binary systems. Many found in globular clusters. Companion expanded, spills material onto slow neutron star. When material reaches NS surface, it is orbiting very rapidly. As it accretes, it adds to angular momentum of NS, spinning it up again. 18

The shape of each pulse shows substantial variation, though the average pulse shape is very stable. PSR1919+21 (first pulsar discovered) (the pulse typically lasts several % of the period) 19

Several pulsars switch between two differently shaped average profiles mode changing. 20

Drifting subpulses : seen in some longer period pulsars: region of emission must migrate around magnetic pole 21 Nulling : several longer period pulsars turn off for a few periods up to a few minutes. Seems connected to mode changing. Eventual turnoff this way?

Structure of neutron stars (possible model) Outer crust: heavy nuclei in a fluid ocean, or solid lattice. Inner crust: mixture of neutron rich nuclei, superfluid free neutrons and relativistic electrons. Interior: primarily superfluid neutrons. Core: uncertain conditions, likely consist of pions and other elementary particles. The maximum mass that can be supported by neutron degeneracy is uncertain, but can be no more than 2.2-2.9 M (depending on rotation rate). 22

Creation of neutrons Neutronization: at high densities neutrons are created rather than destroyed. Recall that neutron stars are remnants of Type II SN - massive stars. During the last stages of a supergiant T core ~ 10 10 K, at which point iron can photodisintegrate: Thus, γ-rays, protons and He nuclei are released. These reactions absorb energy => core thermal pressure drops. 23

Core contracts very fast (tens of 1000 km/s) => degenerate core electrons eventually will have sufficient energy to react with the protons from the photodisintegration. We will have electron capture: All electrons from the core used up => no electron degeneracy pressure => core collapse continues Once T core ~ 10 12 K, the neutrons become degenerate. 24

At what densities does electron capture occur? Assume we start with a star made of e -, p +, and n. The Fermi energy varies depending on the particle mass, with the lighter particles having the higher energies: Electrons have a Fermi energy which is 2000 times higher than that of protons. Energy levels will look like (no to scale): Energy E Fe E Fp 25

When the difference between the Fermi energies is larger than the difference between the p and n mass energies mc 2, an e - can be captured by a proton to create a n. Energy E Fe e E Fp p n The amount of energy required for electron capture (with the release of a massless neutrino) is: 26

Then: There is a density corresponding to this threshold, which we can find from the expression of the Fermi energy: 27

Thus, Compare to the density of the Sun, ~1400 kg m -3. This means that the threshold for electron capture in a 1M neutron star would occur at a radius of about 3400 km. Caveats: We used non-relativistic expression for the kinetic energy of the electrons (see C&O) We have ignored nuclear binding effects (assumed H instead of Fe in core) We calculated the threshold of the formation of neutrons, not really the equilibrium density. Taking that into account, the real threshold density is closer to 10 12 kg m -3. 28

Now, we have formed neutrons (or heavy nuclei rich in neutrons): most stable arrangement is when neutrons and protons are found in a lattice of increasingly neutron rich nuclei => this reduces the Coulomb repulsion between protons. Normal beta-decay won't happen, since no allowed vacant spaces for electrons. At yet higher densities, we will have a more stable arrangement forming with some neutrons outside lattice. 29

Neutron drip Nuclei with too many neutrons are unstable: beyond the neutron drip-line nuclei become unbound. These neutrons form a nuclear 'halo': neutron density extends to larger distances that in a well-bound, stable nucleus. Now: lattice of neutron-rich nuclei, non-relativistic degenerate free neutrons, and relativistic degenerate electrons. 30

Superfluidity Free neutrons pair up to form bosons => Pauli EP will not apply. Degenerate bosons can flow without viscosity (all bosons occupy lowest energy state, so no energy can be lost) A rotating container will form quantized vortices, spinning forever without resistance. At ρ~4x10 15 kg/m 3 neutron degeneracy pressure dominates. Nuclei dissolve and protons also form a superconducting superfluid. 31

Cooling In the collapse (during the SN formation) the internal temperatures drop to 10 9 K within a few days. This is due to neutrinos carrying energy away. Once degenerate, fewer neutrinos created, although still dominating the cooling. Surface temperature ~ 10 6 K for about 10,000 years. 32

Luminosity Blackbody luminosity of 1.4M neutron star with a surface temperature of 10 6 K is given by Stefan-Boltzmann: 7.13x10 25 W Wien's displacement law shows the radiation peaks in the X-ray (2.9nm). Chandra X-ray image of a neutron star. 33

Possible explanations Need to explain very regular pulsations. 1. Binary stars: Such short periods would require very small separations. Could only be neutron stars. However, their orbital periods would decrease as gravitational waves carry their orbital energy away. 2. Pulsating stars: White dwarf oscillations are 100-1000s, much longer than observed for pulsars Neutron star pulsations are predicted to be more rapid than the longest-period pulsars. 3. Rotating stars: How fast can a star rotate before it breaks up? 34