MASS TRANSFER COEFFICIENTS DURING AERATION BY A SELF-ASPIRATING IMPELLER

Similar documents
Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation.

Flow Generated by Fractal Impeller in Stirred Tank: CFD Simulations

AGITATION AND AERATION

PARTICLE SUSPENSION WITH A TX445 IMPELLER

Application of the CFD method for modelling of floating particles suspension

THE VELOCITY FIELD IN THE DISCHARGE STREAM FROM A RUSHTON TURBINE IMPELLER

BAE 820 Physical Principles of Environmental Systems

AIRLIFT BIOREACTORS. contents

ENGG 199 Reacting Flows Spring Lecture 4 Gas-Liquid Mixing Reactor Selection Agitator Design

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

Principles of Convection

MASS TRANSFER EFFICIENCY IN SX MIXERS

MAGNETIC FIELD INFLUENCE ON ELECTROCHEMICAL PROCESSES

Gas transfer rates If either phase concentration can not be predicted by Henry's law then there will be a transfer of mass across the interface until

RELATION BETWEEN PARTICLE RISING BEHAVIOR AND LIQUID FLOW AROUND THE BOTTOM OF A STIRRED VESSEL

Hydrodynamic Electrodes and Microelectrodes

M Manuela R da Fonseca, DEQB. Mixing

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Effect of Suspension Properties on the Electrochemical Method. Ing. Kamila Píchová

Electrochemical Cell - Basics

Power requirements for yield stress fluids in a vessel with forward-reverse rotating impeller

Table of Contents. Preface... xiii

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

Separationsteknik / Separation technology

Review of the Main Mathematical Models Used in VisiMix

1. Starting of a project and entering of basic initial data.

ELECTROCHEMICAL SYSTEMS

EVALUATION OF THE EFFECT OF PITCHED BLADE TURBINE ON MIXING IN AN ELECTROCHEMICAL REACTOR WITH ROTATING RING ELECTRODES.

An Essential Requirement in CV Based Industrial Appliances.

Chemical absorption in Couette Taylor reactor with micro bubbles generation by rotating porous plate

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

MEMBRANE COVERED POLAROGRAPHIC OXYGEN SENSOR MANUFACTURING THEORETICAL CONSIDERATIONS

Unit 2 B Voltammetry and Polarography

Mixing time of surface active agent solutions

Liquid Mixing in Agitated Vessels

Principles of Convective Heat Transfer

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

Assessing Mixing Sensitivities for Scale-up. Matthew Jörgensen Atlanta, 10/20/2014

CFD Simulation in Helical Coiled Tubing

Experimental investigation of heat transfer performance coefficient in tube bundle of shell and tube heat exchanger in two-phase flow

Supplementary Figure 1. Characterization of the effectiveness of ion transport in CNT aerogel sheets. (a)

Oxygen transfer, mixing time and gas holdup characterization in a hybrid bioreactor

Physical & Interfacial Electrochemistry 2013.

mixing of fluids MIXING AND AGITATION OF FLUIDS

EffectofBaffleDesignontheOff-bottomSuspensionCharacteristics ofaxial-flowimpellersinapilot-scalemixingvessel

Solid liquid mass transfer in a fixed bed reactor operating in induced pulsing flow regime.

Membrane Electrodes. Several types

Boundary-Layer Theory

Electrolysis and Faraday's laws of Electrolysis

Dynamic Effect of Discharge Flow of a Rushton Turbine Impeller on a Radial Baffle J. Kratěna, I. Fořt, O. Brůha

Study on residence time distribution of CSTR using CFD

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Chapter 7 Electrochemistry

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

PIV Measurements to Study the Effect of the Reynolds Number on the Hydrodynamic Structure in a Baffled. Vessel Stirred by a Rushton Turbine

Computation on Turbulent Dilute Liquid-Particale. Flows through a Centrifugal Impeller*

EFFECTS OF INTERFACE CONTAMINATION ON MASS TRANSFER INTO A SPHERICAL BUBBLE

VISIMIX LAMINAR. MODELING OF A STAGNANT ZONE FORMATION AS A RESULT OF INEFFICIENT MIXING.

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

Investigation of Packing Effect on Mass Transfer Coefficient in a Single Drop Liquid Extraction Column

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

CONTROL OF TURBULENT MASS TRANSFER IN BACKWARD- FACING STEP FLOW USING ACOUSTIC EXCITATION

Transport phenomenon in a jet type mold cooling pipe

CFD study of gas mixing efficiency and comparisons with experimental data

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

Heat and Mass Transfer Unit-1 Conduction

THE DETAILS OF THE TURBULENT FLOW FIELD IN THE VICINITY OF A RUSHTON TURBINE

Modeling of turbulence in stirred vessels using large eddy simulation

KJ 2051 Coulometric titration of hydrochloric acid

Effect of the Type of Impellers on Mixing in an Electrochemical Reactor

CHEMISTRY 13 Electrochemistry Supplementary Problems

Lecture 2 Flow classifications and continuity

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS

Light-gradient Mixing Performance Improvement of the Flat Plate Photobioreactor with Waved Baffles

INVESTIGATION OF TURBULENCE MODULATION IN SOLID- LIQUID SUSPENSIONS USING PARALLEL COMPETING REACTIONS AS PROBES FOR MICRO-MIXING EFFICIENCY

Turbulence Laboratory

FUEL CELLS in energy technology (4)

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

CHAPTER 6 Modern Theory Principles LECTURER SAHEB M. MAHDI

SEPARATION OF CITRIC AND LACTIC ACID FROM FERMENTATION LIQUID BY THE CHROMATOGRAPHIC METHOD MODELING AND PARAMETERS ESTIMATION

Advances in application of the limiting current technique for. solid-liquid mass transfer investigations

Attention is drawn to the following places, which may be of interest for search:

Flerfasforskning vid Kemisk reaktionsteknik Chalmers. Bengt Andersson Love Håkansson Ronnie Andersson

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient

Computational Fluid Dynamics Modelling of Natural Convection in Copper Electrorefining

Electrochemical Cells

Chapter 5 Control Volume Approach and Continuity Equation

Physical & Interfacial Electrochemistry Lecture 8 Hydrodynamic Voltammetry

Contents. 2. Fluids. 1. Introduction

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

APPLICATION OF STIRRED TANK REACTOR EQUIPPED WITH DRAFT TUBE TO SUSPENSION POLYMERIZATION OF STYRENE

Chapter 25. Voltammetry

Prof. Mario L. Ferrari

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chaos in mixing vessels

A 3-dimensional planar SOFC stack model

Heat transfer enhancement in natural convection in micropolar nanofluids

Transcription:

th European Conference on Mixing Warszawa, - September MASS TRANSFER COEFFICIENTS DURING AERATION BY A SELF-ASPIRATING IMPELLER Czesław Kuncewicz, Jacek Stelmach Lodz University of Technology, Department of Process Equipment ul. Wólczańska, - Łódź, Poland kuncewic@wipos.p.lodz.pl Abstract. Local values of mass transfer coefficient k L were determined for three types of selfaspirating impellers (disk, four- and six-pipe). Measurements were taken in points on the plane between baffles in the tank at four rotation frequencies N =,, and min -. It was found that results obtained at the smallest frequency of rotations of a disk impeller were compatible with these attained basing on Whitman s theory of laminar boundary layer. In the tested range of rotation frequencies the highest values of k L were achieved by a six-pipe impeller. Dependence of mean values of the mass transfer coefficient on rotation frequency of the impeller was also investigated and described by power equations. In the case of pipe impellers the exponent value was about., while for the disk impeller it was higher, i.e. around.. A relation between the energy dissipation rate and distribution of mass transfer coefficients in the tank equipped with a disk impeller was also found. Keywords: self-aspirating impellers, mass transfer coefficient. INTRODUCTION In mass transfer processes an important parameter which has an effect on the transport rate is mass transfer coefficient. In the case of gases which are hardly soluble in liquids, the value of this coefficient is determined by the coefficient of mass transfer in the liquid phase k L. On the other hand, the value of k L depends primarily on hydrodynamic conditions in the system. Its direct specification is difficult, so most often it is determined via volumetric mass transfer coefficient k L a. However, the value of k L a depends on the unit interfacial area which significantly distorts the information on mass transfer conditions and a possibility to improve them in order to intensify the entire process. Therefore, from the distribution of k L in the whole tank much more information can be reached than from a similar distribution of k L a values. One of the ways to determine difficult-to-measure parameter k L is the electrochemical method [,]. Investigations carried out with this method are based on the use of a relation between the intensity of diffusion current flowing between electrodes in the model electrolyte and mass transfer coefficient in the tank. During transport of the substance and charges in the electrolyte stream, ions are transferred from the solution bulk to the electrode surface and current flowing between the electrodes according to Faraday s law is equal to the flow of electroactive substance. A reason for migration of electric charges is the gradient of electric potential. During steady and one-direction mass transport, when redox reaction occurs in the solution and the reduction-oxidation system contains additionally both oxidized and reduced forms of a substance, we have pure flow of the bulk towards the electrode. In such conditions

the process is controlled only by the diffusion of ions to the electrode surface, i.e. according to Fick s first law. When the number of diffusing ions does not balance a decreased number of ions being discharged on the electrode, there is concentration polarization. This is a criterion of deviation of the electrode potential from its equilibrium value. When the current reaches the value of diffusion current, the concentration of ions near the electrode surface tends to ( C A* = ) and the equation which determines the mass transfer coefficient assumes the form () where: I d diffusion current, c A concentration of the reacting ion in the liquid bulk, z e number of exchanged electrons, F Faraday constant, S electrode surface. The major aim of this work is to determine local mass transfer coefficients in the tank with different types of self-aspirating impellers using the electrochemical method and to compare them with the values obtained on the basis of various mass transport theories. The next goal is to identify mean values and find their dependence on turbulence in the tank.. EXPERIMENTAL Experiments were carried out in a glass flat-bottom tank of diameter T = mm. equipped with four standard baffles (B =. T). Three self-aspirating impellers were used: disk (), four- (PI) and six-pipe (PI). The diameter of all impellers was D = mm. Rotation frequencies of the impellers were the same, i.e. N =,, and min -. Fig.. Schematic of the measuring set-up with the grid of measuring points and impellers Local values of coefficient k L were measured in the radial-axial plane determined by the tank axis and angle bisector which includes two neighboring baffles. In this way the measuring plane was located at equal distances between the baffles. The anode was a platinum plate cm cm placed on the tank bottom. The measuring cathode of diameter d e = mm was located in a specific point of the tank (Fig. ). The intensity of current flowing in such a system was recorded by a digital meter and next transmitted to a computer at the frequency of Hz. The intensity of diffusion current was calculated basing on a mean value from measurements. In the measuring system a cathode reduction of K Fe(CN) on the platinum electrode surface was applied. The electrolyte used in the experiments was a water solution of K Fe(CN) at the concentration. kmol/m, K Fe(CN) at the concentration. kmol/m and NaOH at the concentration. kmol/m (it played the role of a current carrier). In such a system the reactions of reduction-oxidation of iron ions took place.

Based on the preliminary measurements without gas dispersion, the tension of plateau was determined (U =. V) for which diffusion current was measured at working rotation frequencies of the impeller with gas dispersion. For the recorded values of diffusion current I d the mass transfer coefficient k L was calculated from equation ().. RESULTS AND SCUSSION Basing on the obtained data, contour plots of k L distribution on the tested tank cross section were prepared. Figure shows the distribution of local mass transfer coefficients k L at the impeller rotation frequency N = min -. At this rotation frequency of the impellers the stream of dispersed gas is small and has no significant effect on liquid hydrodynamics in the tank []. Therefore, for this frequency of impeller rotations it is possible to verify results obtained with the values calculated by means of various mass transport theories. k L [m/s] PI PI y[mm] Fig.. Distributions of k L for N = min - The highest values of k L appear on the level of the impeller suspension at the distance of several millimeters from the blade tips. Experiments carried out for impeller rotating at the frequency N = min - showed [] that in this region the highest relative velocities of liquid and bubbles occurred (Fig. a) which should ensure the best mass transport conditions. From Whitman s theory of laminar boundary layer the following relation was obtained [,] () where d bubble diameter, D A diffusion coefficient, v s bubble velocity vs. liquid, c constant (c =..). It is assumed that bubble diameter is the Sauter diameter which for gas dispersed by impeller in the electrolytes can be calculated from the relation []:,,,, () In the discussed conditions it is d =. mm. On the basis of literature data the value of diffusion coefficient can be assumed as equal to D AB =. - m /s []. Higbie s penetration model leads to the relation [,,]:, / () According to literature data, the experimentally determined values of k L are within the range of values calculated from relations () and (). Figure b shows a comparison of experimental k L values and these calculated from equation () for c =. and from equation () for the height equal to the height of the impeller suspension. Good agreement was obtained with the model of laminar boundary layer. Values calculated from equation () are by one order of magnitude bigger than these determined experimentally. This confirms information given in the literature that relation () is applied to small bubbles of diameters smaller than mm [].

a) U rel [m/s],, b) y[mm],,,,,,,, k L [m/s] eq.() eq.() exp.,, - - - - - - - Fig.. Relative velocities and comparison of experimental and theoretical values of k L It was also found that mass transfer coefficient depended on energy dissipation rate []: () For coefficient c =. the values of k L for impeller calculated from equation () are by one order of magnitude bigger than the measured ones (Fig. a), like in the case of the penetration model. However, a certain similarity can be observed in the distributions of mass transfer coefficients obtained experimentally and calculated from equation () Fig. and a. a) Fig.. k L from equation () and liquid circulation in the tank with impeller k L [m/s],, H[mm] - -,,,,,,,, b) Toward the tank wall relative velocities and the values of mass transfer coefficient decrease. In the case of impeller there is an elongated narrow region with increased k L values over the tips of impeller blades as if part of the bubbles were flowing toward free surface. The highest k L was observed for impeller PI which might suggest that hydrodynamic conditions were the best in this case. This is in agreement with the preliminary design of impeller which assumes a decrease of shearing rates that have a negative impact on biomass in the impeller region at a fairly large gas stream being ensured. Above half of the liquid height, the values of k L are settled down but near the wall they are slightly smaller than near the tank axis. This can be a result of hydrodynamic conditions. When bubbles go beyond the impeller region, buoyancy starts to dominate and the bubbles move toward the liquid surface. For bubbles of diameter. mm the velocity at which they ascend freely in water ( C) is. m/s. For comparison, Fig. b shows velocity fields in the tested impeller cross section for rotation frequency of impeller equal to N = min -, i.e. smaller than the discussed one. An increase of the rotation frequency of the impeller by about %, i.e. to min - (Fig. ) causes an increase of local values of mass transfer coefficients both near the impeller R* [-] R [mm] area covered by baffle u* [-],,,,,,,,,,,,,,,,,,,,,

and in other parts of the tank. Any further increase of the rotation frequency of the impeller (Fig. and ) does not affect so strongly the values of kl near the impeller. Enlarged are the regions with higher kl values in the remaining part of the tank. kl [m/s] PI PI Fig.. kl distributions at N = min- kl [m/s] PI PI Fig.. kl distributions at N = min- kl [m/s] PI PI Fig.. kl distributions at N = min- The use of weighted average with weights equal to volume fractions for which the value of <kl> was determined, allows us to calculate mass transfer coefficient for the entire tank. Figure shows values obtained depending on the impeller rotation frequency. Figure presents also dimensional correlation equations in which global/mean mass transfer coefficient <kl> [m/s] depends on rotation frequency of the impeller N [s-]. Since the Reynolds number is proportional to the impeller rotation frequency, it was decided to use a power relation which was typical of correlation equations describing mass transfer. Exponents in the equations for pipe impellers (PI and PI) have almost identical values close to..

These values differ significantly from ca.. exponent in the equation for disk impeller (). So, it can be stated that hydrodynamics in the tank equipped with a disk impeller differs appreciably from the hydrodynamics of pipe impellers.,x - N [s - ],x -, k L_PI =, - N,x - <k L > [m/s],x - x -, k L_PI =, - N,x -,x -, k L_ =, - N N [min - ] Fig.. Mean values of mass transfer coefficients PI PI. CONCLUSIONS In the case of impeller the process of mass transfer can be described by Whitman s model of laminar boundary layer. The highest values of mass transfer coefficient for all tested impellers occur at the height of the impeller suspension at the distance of ca. mm from the blade tips. In the tested range of changing rotation frequencies, the relation k L = f(n) is well described by the power equation. However, there are significant differences in the exponents. For pipe impellers (PI and PI) the exponent is., while for disk impeller () it is.. The study was carried out within the project no. W-///Dz.St.. REFERENCES [] Broniarz-Press L., Różańska S.,. Application of the electrochemical method for the specification of flow and heat transfer in non-newtonian media, Turbulence,, -. [] Kurasiński T.,. Influence of turbulent field parameters on mass transfer rate for self-aspirating impellers, PhD thesis (in Polish), Technical University of Lodz. [] Stelmach J., Kuncewicz Cz.,. Liquid and gas bubbles velocities at the level of a self-aspirating disk impeller, Przem. Chem., (), -. [] Alves S.S., Maia C.I., Vasconcelos J.M.T.,. Gas-liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics, Chem. Eng. Proc.,, -. [] Linek V., Kordač M., Fujasowá M., Moucha T., Gas-liquid mass transfer coefficient in stirred tanks interpreted through models of idealized eddy structure of turbulence in the bubble vicinity, Chem. Eng. Proc.,, -. [] Stelmach J.,. Investigations of a self-aspirating disk impeller work, PhD thesis (in Polish), Technical University of Lodz. [] Ju L.-K., Ho Ch.S.,. Measuring oxygen diffusion coefficients with polarographic oxygen electrodes: I. Electrolyte solutions, Biotech. Bioeng.,, -. [] Alves S.S., Vasconcelos J.M.T., Orvalho S.P.,. Mass transfer to clean bubbles at low turbulent energy dissipation, Chem. Eng. Sci.,, -.