Probability and Stochastic Processes

Similar documents
Probability. Stochastic Processes

Chapter 2 Probability and Stochastic Processes

Professor Wei Zhu. 1. Sampling from the Normal Population

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

χ be any function of X and Y then

= y and Normed Linear Spaces

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

XII. Addition of many identical spins

CODING & MODULATION Prof. Ing. Anton Čižmár, PhD.

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Chapter 7 Varying Probability Sampling

Fairing of Parametric Quintic Splines

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2)

Lecture 10: Condensed matter systems

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

Lecture 3 Probability review (cont d)

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Chapter 5 Properties of a Random Sample

The Exponentiated Lomax Distribution: Different Estimation Methods

Exponential Generating Functions - J. T. Butler

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

Detection and Estimation Theory

Randomly Weighted Averages on Order Statistics

Special Instructions / Useful Data

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

The Mathematical Appendix

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

X ε ) = 0, or equivalently, lim

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

Learning Bayesian belief networks

Module 7. Lecture 7: Statistical parameter estimation

Lecture Notes Types of economic variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

Chapter 14 Logistic Regression Models

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Functions of Random Variables

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

Allocations for Heterogenous Distributed Storage

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

Chapter 2: Descriptive Statistics

Lecture 24: Observability and Constructibility

ˆ SSE SSE q SST R SST R q R R q R R q

Chapter 4 Multiple Random Variables

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

Point Estimation: definition of estimators

Summary of the lecture in Biostatistics

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Econometric Methods. Review of Estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation

Bayes (Naïve or not) Classifiers: Generative Approach

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

ρ < 1 be five real numbers. The

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

CHAPTER VI Statistical Analysis of Experimental Data

Introduction to Probability

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

φ (x,y,z) in the direction of a is given by

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Lecture 9 Multiple Class Models

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research

Counting pairs of lattice paths by intersections

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Trace of Positive Integer Power of Adjacency Matrix

VIII Dynamics of Systems of Particles

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

Signal,autocorrelation -0.6

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

Record Values from Size-Biased Pareto Distribution and a Characterization

Random Variables and Probability Distributions

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Multivariate Transformation of Variables and Maximum Likelihood Estimation

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

ASYMPTOTICS OF THE GENERALIZED STATISTICS FOR TESTING THE HYPOTHESIS UNDER RANDOM CENSORING

1 Solution to Problem 6.40

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

An Unconstrained Q - G Programming Problem and its Application

THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS

Sandwich Theorems for Mcshane Integration

Mu Sequences/Series Solutions National Convention 2014

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

Transcription:

Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg Natoal Su Yat-se Uvesty

Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal Aveages of Radom Vaables Some Useful Pobablty Dstbutos Uppe Bouds o the Tal Pobablty Sums of Radom Vaables ad the Cetal Lmt Theoem Stochastc Pocesses Statstcal Aveages Powe Desty Spectum Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Dscete-Tme Stochastc Sgals ad Systems Cyclostatoay Pocesses

Pobablty Sample space o ceta evet of a de epemet: { } S,,3,4,5,6 The s outcomes ae the sample pots of the epemet. A evet s a subset of S, ad may cosst of ay umbe of sample pots. Fo eample: A,4 { } The complemet of the evet A, deoted by A, cossts of all the sample pots S that ae ot A: A {,3,5,6} 3

Pobablty Two evets ae sad to be mutually eclusve f they have o sample pots commo that s, f the occuece of oe evet ecludes the occuece of the othe. Fo eample: A {,4}; B {,3,6} A ad A ae mutually eclusve evets. The uo sum of two evets a evet that cossts of all the sample pots the two evets. Fo eample: C {,,3 } D B C,,3, 6 A A S { } 4

Pobablty The tesecto of two evets s a evet that cossts of the pots that ae commo to the two evets. Fo eample: E B C {,3} Whe the evets ae mutually eclusve, the tesecto s the ull evet, deoted as φ. Fo eample: A A φ 5

Pobablty Assocated wth each evet A cotaed S s ts pobablty PA. Thee postulatos: PA. The pobablty of the sample space s PS. Suppose that A,,,, ae a possbly fte umbe of evets the sample space S such that A Aj φ; j,,... The the pobablty of the uo of these mutually eclusve evets satsfes the codto: P A P A 6

Pobablty Jot evets ad jot pobabltes two epemets If oe epemet has the possble outcomes A,,,,, ad the secod epemet has the possble outcomes B j, j,,,m, the the combed epemet has the possble jot outcomes A,B j,,,,, j,,,m. Assocated wth each jot outcome A,B j s the jot pobablty P A,B j whch satsfes the codto: P A, B Assumg that the outcomes B j, j,,,m, ae mutually eclusve, t follows that: m P A, B P A j If all the outcomes of the two epemets ae mutually eclusve, the: m P A, B P A j j 7 j j

Pobablty Codtoal pobabltes The codtoal pobablty of the evet A gve the occuece of the evet B s defed as: P A, B P A B P B povded PB>. P A, B P A B P B P B A P A P A, B stepeted as the pobablty of A That s, P A, B deotes the smultaeous occuece of A ad B. If two evets A ad B ae mutually eclusve, A B φ, the PAB. If B s a subset of A, we have A B B ad P A B. B. 8

Pobablty Bayes theoem: If A,,,...,, ae mutually eclusve evets such that ad B s a abtay evet wth ozeo pobablty, the PAB, PA B PB A j S P B APA PB A PA j j, j j j P B P B A P B A P A j j PA epesets the a po pobabltes ad PA B s the a posteo pobablty of A codtoed o havg obseved the eceved sgal B. 9

Statstcal depedece Whe the evets A ad B satsfy the elato PA,BPAPB, they ae sad to be statstcally depedet. Thee statstcally depedet evets A, A, ad A 3 must satsfy the followg codtos:. the, of ot deped o the occuece does the occuece of If A P B A P B A, B P A P B P B A P B A P,,,,, 3 3 3 3 3 3 A P A P A P A A A P A P A P A A P A P A P A A P A P A P A A P Pobablty

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Gve a epemet havg a sample space S ad elemets s S, we defe a fucto X s whose doma s S ad whose age s a set of umbes o the eal le. The fucto Xs s called a adom vaable. Eample : If we flp a co, the possble outcomes ae head H ad tal T, so S cotas two pots labeled H ad T. Suppose we defe a fucto Xs such that: + s H X s - s T Thus we have mapped the two possble outcomes of the co-flppg epemet to the two pots +,- o the eal le. Eample : Tossg a de wth possble outcomes S{,,3,4,5,6}. A adom vaable defed o ths sample space may be Xss, whch case the outcomes of the epemet ae mapped to the teges,,6, o, pehaps, Xss, whch case the possble outcomes ae mapped to the teges {,4,9,6,5,36}.

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Gve a adom vaable X, let us cosde the evet {X } whee s ay eal umbe the teval -,. We wte the pobablty of ths evet as PX ad deote t smply by F,.e., F PX, -< < The fucto F s called the pobablty dstbuto fucto of the adom vaable X. It s also called the cumulatve dstbuto fucto CDF. F F ad F.

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Eamples of the cumulatve dstbuto fuctos of two dscete adom vaables. 3

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes A eample of the cumulatve dstbuto fucto of a cotuous adom vaable. 4

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes A eample of the cumulatve dstbuto fucto of a adom vaable of a med type. 5

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes The devatve of the CDF F, deoted as p, s called the pobablty desty fucto PDF of the adom vaable X. p F df, d p u du, < < < < Whe the adom vaable s dscete o of a med type, the PDF cotas mpulses at the pots of dscotuty of F: p P X δ 6

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Detemg the pobablty that a adom vaable falls a teval,, whee >. X P X P X + P < X F F + P < X P < X F F The pobablty of the evet p d { < X } s smply the aea ude the PDF the age < X. 7

8 Multple adom vaables, jot pobablty dstbutos, ad jot pobablty destes: two adom vaables.,,, : Note that,, PDFs. the vaables ae called of obtaed fom tegatg ove oe ad The PDFs,,,, Jot PDF :,,, Jot CDF : - - - - F F F F d d p p p p d p p d p F p du du u u p X X P F magal Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes

Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Multple adom vaables, jot pobablty dstbutos, ad jot pobablty destes: multdmesoal adom vaables Suppose Jot CDF Jot PDF that F F F p, p,,...,,,...,,..., d,,, 4,..., F,,,,...,. X,,,...,, ae adom vaables. 4 P X 3... - - d..., 4, p, p u X 5 F,, u 4,...,,,..., u,...,.,...,,..., X du du... du 9

Statstcal Aveages of Radom Vaables The mea o epected value of X, whch chaactezed by ts PDF p, s defed as: E X m p d Ths s the fst momet of adom vaable X. The -th momet s defed as: E X p d Defe YgX, the epected value of Y s: [ g X ] E Y E g p d

The -th cetal momet of the adom vaable X s: Whe, the cetal momet s called the vaace of the adom vaable ad deoted as : I the case of two adom vaables, X ad X, wth jot PDF p,, we defe the jot momet as: [ ] d p m m X E Y E [ ] m X E X E X E d p m, d d p X X E k k Statstcal Aveages of Radom Vaables

Statstcal Aveages of Radom Vaables The jot cetal momet s defed as: E [ X m X m ] k m k If k, the jot momet ad jot cetal momet ae called the coelato ad the covaace of the adom vaables X ad X, espectvely. The coelato betwee X ad X j s gve by the jot momet: E X X p, d d j m p, d j j j d

Statstcal Aveages of Radom Vaables The covaace betwee X ad X j s gve by the jot cetal momet: µ E[ X m X m ] j E X m m m m + m m X j j j j j j m m j j p, p, j j j j The mat wth elemets μ j s called the covaace mat of the adom vaables, X,,,,. j d d d d p, j j j m m m m j d d j j j p, m m j j d d + m m j j 3

Statstcal Aveages of Radom Vaables Two adom vaables ae sad to be ucoelated f EX X j EX EX j m m j. Ucoelated Covaace μ j. If X ad X j ae statstcally depedet, they ae ucoelated. If X ad X j ae ucoelated, they ae ot ecessay statstcally depedetly. Two adom vaables ae sad to be othogoal f EX X j. Two adom vaables ae othogoal f they ae ucoelated ad ethe oe o both of them have zeo mea. 4

Statstcal Aveages of Radom Vaables Chaactestc fuctos The chaactestc fucto of a adom vaable X s defed as the statstcal aveage: jvx E e ψ jv e jv p d Ψjv may be descbed as the Foue tasfom of p. The vese Foue tasfom s: jv p ψ jv e dv π Fst devatve of the above equato wth espect to v: dψ jv jv j e p d dv 5

Statstcal Aveages of Radom Vaables Chaactestc fuctos cot. Fst momet mea ca be obtaed by: E X m j dψ jv dv v Sce the dffeetato pocess ca be epeated, -th momet ca be calculated by: E X j d ψ jv dv v 6

7 Chaactestc fuctos cot. Detemg the PDF of a sum of statstcally depedet adom vaables: [ ] X Y X Y jv jvx jvy Y jv jv X jv jv p p p p d d d p e e E X jv E e E jv X Y ae d depedet ad detcally dstbuted If...,...,, Sce the adom vaables ae statstcally depedet,...,...,,... ep ψ ψ ψ ψ ψ Statstcal Aveages of Radom Vaables

Statstcal Aveages of Radom Vaables Chaactestc fuctos cot. The PDF of Y s detemed fom the vese Foue tasfom of Ψ Y jv. Sce the chaactestc fucto of the sum of statstcally depedet adom vaables s equal to the poduct of the chaactestc fuctos of the dvdual adom vaables, t follows that, the tasfom doma, the PDF of Y s the - fold covoluto of the PDFs of the X. Usually, the -fold covoluto s moe dffcult to pefom tha the chaactestc fucto method detemg the PDF of Y. 8

9 Bomal dstbuto dscete: Let what s the pobablty dstbuto fucto of Y? p X P X P whee the,,,..., ae statstcally d, Y X X s : PDF of!!! k y p p k k y k P Y y p Y k k k p p k k P Y k k k k k k δ δ Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Bomal dstbuto: The CDF of Y s: [ y] k k F y P Y y p p k k whee [y] deotes the lagest tege m such that m y. The fst two momets of Y ae: E Y p E Y p p p The chaactestc fucto s: p + p jv j p pe ψ ν + 3

3 Ufom Dstbuto The fst two momets of X ae: The chaactestc fucto s: 3 b a ab b a X E b a X E + + + a b jv e e j jva jvb ν ψ Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The PDF of a Gaussa o omal dstbuted adom vaable s: m / p e π whee m s the mea ad s the vaace of the adom vaable. u m du t, dt The CDF s: F + e π m ef du π m efc u m m / / e t dt 3

Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto ef ad efc deote the eo fucto ad complemetay eo fucto, espectvely, ad ae defed as: ef e t t dt ad efc e dt ef π π ef--ef, efc--efc, efefc, ad efefc. Fo >m, the complemetay eo fuctos s popotoal to the aea ude the tal of the Gaussa PDF. 33

Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The fucto that s fequetly used fo the aea ude the tal of the Gaussa PDF s deoted by Q ad s defed as: t / Q e dt efc π 34

Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The chaactestc fucto of a Gaussa adom vaable wth mea m ad vaace s: jv m / jvm / v ψ jv e e d e π The cetal momets of a Gaussa adom vaable ae: k [ ] k 3 k eve k E X m µ k odd k The oday momets may be epessed tems of the cetal momets as: [ ] k k k E X m k µ 35

36 Gaussa Nomal Dstbuto The sum of statstcally depedet Gaussa adom vaables s also a Gaussa adom vaable.. ad vaace s Gaussa - dstbuted wth mea Theefoe, ad whee / / y y y y v jvm v jvm X Y m Y m m e e jv jv X Y y y ψ ψ Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Ch-squae dstbuto If YX, whee X s a Gaussa adom vaable, Y has a chsquae dstbuto. Y s a tasfomato of X. Thee ae two type of ch-squae dstbuto: Cetal ch-squae dstbuto: X has zeo mea. No-cetal ch-squae dstbuto: X has o-zeo mea. Assumg X be Gaussa dstbuted wth zeo mea ad vaace, we ca apply.-47 to obta the PDF of Y wth a ad b; p Y y p X [ g [ y b y b / a] + / a] p X [ g [ y b / a y b / a] ] 37

38 Cetal ch-squae dstbuto The PDF of Y s: The CDF of Y s: The chaactestc fucto of Y s:, / y e y y p y Y π du e u du u p y F u y y Y Y / π / ψ v j jv Y Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom. Y X,, X,,...,, ae statstcally depedet ad detcally dstbuted d Gaussa adom vaables wth zeo mea ad vaace. The chaactestc fucto s: ψ Y jv / jv The vese tasfom of ths chaactestc fucto yelds the PDF: / -y/ py y y e, y / Γ 39

Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. Γ p s the gamma fucto, defed as : Γ p Γ p t p p -! dt, 3 Γ π Γ π Whe, the dstbuto yelds the epoetal dstbuto. e t p > p a tege > 4

Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. The PDF of a ch-squae dstbuted adom vaable fo seveal degees of feedom. 4

4 Ch-squae Gamma dstbuto wth degees of feedom cot.. The fst two momets of Y ae: The CDF of Y s: 4 4 4 Y E Y E y + Γ y u Y y du e u y F / / /, Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. The tegal CDF of Y ca be easly mapulated to the fom of the complete gamma fucto, whch s tabulated by Peaso 965. Whe s eve, the tegal ca be epessed closed fom. Let m/, whee m s a tege, we ca obta: F Y m y / y y e k k! k, y 43

Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto If X s Gaussa wth mea m ad vaace, the adom vaable YX has the PDF: p Y y+ m / ym y e cosh πy, y The chaactestc fucto coespodg to ths PDF s: ψ Y jv jv / e jm v / jv 44

Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom Y X, X,,,...,, ae statstcally depedet ad detcally dstbuted d Gaussa adom vaables wth mea m,,,...,, ad detcal vaace equal The chaactestc fucto s: ψ jv Y jv / jv ep m jv to. 45

Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom The chaactestc fucto ca be vese Foue tasfomed to yeld the PDF: y /4 s + y/ s py y e I / y, y s whee, s s called the o-cetalty paamete: s m ad Iα s the αth-ode modfed Bessel fucto of the fst kd, whch may be epeseted by the fte sees: α + k / Iα, k! Γ α + k+ k 46

47 No-cetal ch-squae dstbuto wth degees of feedom The CDF s: The fst two momets of a o-cetal ch-squaedstbuted adom vaable ae: + y u s Y du s u I e s u y F / / 4 / 4 4 4 4 s s s Y E s Y E y + + + + + Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom Whe m/ s a tege, the CDF ca be epessed tems of the geealzed Macum s Q fucto: m + a / Qm a, b b e Im a d a m k a + b / b Q a, b + e Ik ab k a k a + b / b whee Q a, b e Ik ab, b > a > k a u By usg ad let a s, t s easly show: s y FY y Qm, 48

Some Useful Pobablty Dstbutos Raylegh dstbuto Raylegh dstbuto s fequetly used to model the statstcs of sgals tasmtted though ado chaels such as cellula ado. Cosde a cae sgal s at a fequecy ω ad wth a ampltude a: s a ep jω t The eceved sgal s s the sum of waves: s a ep whee ep jθ [ j ω t + θ ] ep[ j ω t + θ ] a ep jθ 49

Some Useful Pobablty Dstbutos Raylegh dstbuto Defe : ep jθ a cosθ + j a sθ + jy We have : a cosθ ad y a sθ whee : + y cosθ y sθ Because s usually vey lage, the dvdual ampltudes a ae adom, ad 3 the phases θ have a ufom dstbuto, t ca be assumed that fom the cetal lmt theoem ad y ae both Gaussa vaables wth meas equal to zeo ad vaace: y 5

5 Raylegh dstbuto Because ad y ae depedet adom vaables, the jot dstbuto p,y s The dstbuto p,θ ca be wtte as a fucto of p,y : + ep, π y y p p y p ep, cos s s cos / / / /,, π θ θ θ θ θ θ θ θ p y y J y p J p Some Useful Pobablty Dstbutos

5 Raylegh dstbuto Thus, the Raylegh dstbuto has a PDF gve by: The pobablty that the evelope of the eceved sgal does ot eceed a specfed value R s gve by the coespodg cumulatve dstbuto fucto CDF: othewse, / e d p p R π θ θ, ep / / du e u F u R Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Raylegh dstbuto Mea: mea Vaace: π.49 Meda value of s foud by solvg:.77 Moets of R ae: E[ R] p d E[ R ] E [ R] meda E[ R k π. 533 p d k / Γ + ] k π meda p d Most lkely value: ma { p R }. 53

Some Useful Pobablty Dstbutos Raylegh dstbuto 54

55 Raylegh dstbuto Pobablty That Receved Sgal Does t Eceed A Ceta Level R ep ep ep u du u u du u p F R Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Raylegh dstbuto - Mea value: E[ R] p d mea ep d d ep ep ep + d π ep d π π π.533 56

57 Raylegh dstbuto: Mea squae value: 3 ep ep ep ep ep ] [ + d d d d p R E - Some Useful Pobablty Dstbutos

58 Raylegh dstbuto Vaace:.49 ] [ ] [ π π R E R E Some Useful Pobablty Dstbutos

59 Raylegh dstbuto Most lkely value Most Lkely Value happes whe: dp / d.665 ep ep ep ep 4 p d dp Some Useful Pobablty Dstbutos

6 Raylegh dstbuto Chaactestc fucto,...,,,! ; ; the cofluet hyupegeometcfucto : s ;, whee ;, s cos / / / / + Γ Γ Γ + Γ + + β β α β α β α π ψ k k v jv R k k k F a F e v j v F d v e j d v e d e e jv Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Raylegh dstbuto Chaactestc fucto cot. Beauleu 99 epessed as : F, has show that ; a e a k F, a k k k! ; a may be 6

Some Useful Pobablty Dstbutos Rce dstbuto Whe thee s a domat statoay o-fadg sgal compoet peset, such as a le-of-sght LOS popagato path, the small-scale fadg evelope dstbuto s Rce. s y + scatteed waves 'ep[ j ω t + θ ] + [ + + A sθ A + A + cosθ y dect waves Aep jω t jy]ep jω t ep[ j ω t + θ ] 6

Some Useful Pobablty Dstbutos Rce dstbuto By followg smla steps descbed Raylegh dstbuto, we obta: + A A ep I fo A, p fo < whee π A A cosθ I ep dθ π s the modfed zeoth-ode Bessel fucto. I! 63

Some Useful Pobablty Dstbutos Rce dstbuto The Rce dstbuto s ofte descbed tems of a paamete K whch s defed as the ato betwee the detemstc sgal powe ad the vaace of the mult-path. It s gve by KA / o tems of db: A KdB log [db] The paamete K s kow as the Rce facto ad completely specfes the Rce dstbuto. As A, K - db, ad as the domat path deceases ampltude, the Rce dstbuto degeeates to a Raylegh dstbuto. 64

Some Useful Pobablty Dstbutos Rce dstbuto 65

66 Rce dstbuto [ ] [ ] [ ] [ ] + + + + + + + + + j a j t j t j jy A t j A t j t j A t j j t j A t j j a t j A t j a s ep 'ep whee ep ep ep 'ep ep ep 'ep ep ep ep ep θ θ θ ω ω ω θ ω ω ω θ ω ω θ ω θ ω Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Rce dstbuto Defe : 'ep jθ We have : ad + A a + cosθ y a cosθ + j ad y sθ sθ + A cosθ y sθ a a + jy Because s usually vey lage, the dvdual ampltudes a ae adom, ad 3 the phases θ have a ufom dstbuto, t ca be assumed that fom the cetal lmt theoem ad y ae both Gaussa vaables wth meas equal to zeo ad vaace: y 67

68 Rce dstbuto Because ad y ae depedet adom vaables, the jot dstbuto p,y s The dstbuto p,θ ca be wtte as a fucto of p,y : + ep, π y y p p y p y y J y p J p θ θ θ θ θ θ θ cos s s cos / / / /,, Some Useful Pobablty Dstbutos

69 Rce dstbuto + + + + cos ep ep cos ep s cos ep ep, θ π θ π θ θ π π θ A A A A A y p Some Useful Pobablty Dstbutos

7 Rce dstbuto + othewse cos ep ep, gve by : pobablty desty fucto pdf The Rce dstbuto has a d A A d p p π π θ θ π θ θ Some Useful Pobablty Dstbutos

Some Useful Pobablty Dstbutos Nakagam m-dstbuto Fequetly used to chaacteze the statstcs of sgals tasmtted though mult-path fadg chaels. PDF s gve by Nakagam 96 as: p R Γ m Ω m Ω E R m m m / Ω Ω m, m E[ R Ω ] The paamete m s defed as the ato of the fadg fgue. e momets, called 7

Some Useful Pobablty Dstbutos Nakagam m-dstbuto The -th momet of R s: E Γ m + / R Γ m Ω m / By settg m, the PDF educes to a Raylegh PDF. 7

Some Useful Pobablty Dstbutos Logomal dstbuto: Let X l R, whee X s omally dstbuted wth mea m ad vaace. The PDF of R s gve by: p l m / e π < The logomal dstbuto s sutable fo modelg the effect of shadowg of the sgal due to lage obstuctos, such as tall buldgs, moble ado commucatos. 73

Some Useful Pobablty Dstbutos Multvaate Gaussa dstbuto Assume that X,,,,, ae Gaussa adom vaables wth meas m,,,,; vaaces,,,,; ad covaaces μ j,,j,,,. The jot PDF of the Gaussa adom vaables X,,,,, s defed as p,..., M deotes the covaace mat wth elemets {μ j };, / / π det M deotes the colum vecto of the adom vaables; m deote the colum vecto of mea values m,,,,. M - deotes the vese of M. deotes the taspose of. ep m M m 74

Some Useful Pobablty Dstbutos Multvaate Gaussa dstbuto cot. Gve v the -dmesoal vecto wth elemets υ,,,,, the chaactestc fucto coespodg to the - dmetoal jot PDF s: ψ jv jv E e ep jm v v Mv X 75

Some Useful Pobablty Dstbutos B-vaate o two-dmesoal Gaussa The bvaate Gaussa PDF s gve by: p, π ρ ρ ep π ρ m µ mx µ j ρj, j, ρj m m m + m,, E m m m M µ µ j ρ ρ M, M ρ ρ ρ 76

Some Useful Pobablty Dstbutos B-vaate o two-dmesoal Gaussa ρ s a measue of the coelato betwee X ad X. Whe ρ, the jot PDF p, factos to the poduct p p, whee p,,, ae the magal PDFs. Whe the Gaussa adom vaables X ad X ae ucoelated, they ae also statstcally depedet. Ths popety does ot hold geeal fo othe dstbutos. Ths popety ca be eteded to -dmesoal Gaussa adom vaables: f ρ j fo j, the the adom vaables X,,,,, ae ucoelated ad, hece, statstcally depedet. 77

Uppe Bouds o the Tal Pobablty Chebyshev equalty Suppose X s a abtay adom vaable wth fte mea m ad fte vaace. Fo ay postve umbe δ: Poof: P δ X m δ m δ m p d m p d δ p d δ P X m δ m δ 78

Uppe Bouds o the Tal Pobablty Chebyshev equalty Aothe way to vew the Chebyshev boud s wokg wth the zeo mea adom vaable YX-m. Defe a fucto gy as: g Y Y Y δ < δ Uppe-boud gy by the quadatc Y/δ,.e. The tal pobablty E g Y δ g y p y dy δ p y dy + p y dy P Y [ ] Y E Y g Y E δ g Y Y δ y E δ δ δ δ 79

Uppe Bouds o the Tal Pobablty Chebychev equalty A quadatc uppe boud o gy used obtag the tal pobablty Chebyshev boud Fo may pactcal applcatos, the Chebyshev boud s etemely loose. 8

Uppe Bouds o the Tal Pobablty Cheoff boud The Chebyshev boud gve above volves the aea ude the two tals of the PDF. I some applcatos we ae teested oly the aea ude oe tal, ethe the teval δ, o the teval -, δ. I such a case, we ca obta a etemely tght uppe boud by ove-boudg the fucto gy by a epoetal havg a paamete that ca be optmzed to yeld as tght a uppe boud as possble. Cosde the tal pobablty the teval δ,. Y < δ vy δ Y δ g Y e ad g Y s defed as g Y whee v s the paamete to be optmzed. 8

Uppe Bouds o the Tal Pobablty Cheoff boud The epected value of gy s E v Y δ [ g y ] P Y δ E e Ths boud s vald fo ay υ. 8

Uppe Bouds o the Tal Pobablty Cheoff boud The tghtest uppe boud s obtaed by selectg the value that mmzes Ee υy-δ. A ecessay codto fo a mmum s: d v Y δ E e dv d dv vy δ d vy δ vy δ E e E e E Y δ e dv δ e E Ye E e vδ vy vy E vy vy Ye δe e Fd ν 83

Uppe Bouds o the Tal Pobablty Cheoff boud Let vˆ be the soluto, the uppe boud o the oe -sded tal pobablty s : vˆ δ vy ˆ δ e E e P Y A uppe boud o the lowe tal pobablty ca be obtaed a smla mae, wth the esult that vˆ δ vˆ Y δ e E e δ < P Y 84

Uppe Bouds o the Tal Pobablty Cheoff boud Eample: Cosde the Laplace PDF pye - y /. The tue tal pobablty s: δ δ y e dy e P Y δ 85

目前無法顯示此圖像 Uppe Bouds o the Tal Pobablty Cheoff boud Eample cot. vy v E Ye v + v Sce E Ye P Y vy δ vy E e + vˆ δ fo δ >> : + δ δ δ vy e + + δ δ, we obta + v v + δ δ δ + v δ vˆ must be postve δ δ e fo Chebyshev boud P Y E e v 86

Sums of Radom Vaables ad the Cetal Lmt Theoem Sum of adom vaables Suppose that X,,,,, ae statstcally depedet ad detcally dstbuted d adom vaables, each havg a fte mea m ad a fte vaace. Let Y be defed as the omalzed sum, called the sample mea: The mea of Y s E Y X y Y m E X m 87

88 Sum of adom vaables The vaace of Y s: A estmate of a paamete ths case the mea m that satsfes the codtos that ts epected value coveges to the tue value of the paamete ad the vaace coveges to zeo as s sad to be a cosstet estmate. [ ] m m m m X E X E X E m X X E m E Y m E Y j j j j j y y + + + Sums of Radom Vaables ad the Cetal Lmt Theoem

Stochastc Pocesses May of adom pheomea that occu atue ae fuctos of tme. I dgtal commucatos, we ecoute stochastc pocesses : The chaactezato ad modelg of sgals geeated by fomato souces; The chaactezato of commucato chaels used to tasmt the fomato; The chaactezato of ose geeated a eceve; The desg of the optmum eceve fo pocessg the eceved adom sgal. 89

Stochastc Pocesses Itoducto At ay gve tme stat, the value of a stochastc pocess s a adom vaable deed by the paamete t. We deote such a pocess by Xt. I geeal, the paamete t s cotuous, wheeas X may be ethe cotuous o dscete, depedg o the chaactestcs of the souce that geeates the stochastc pocess. The ose voltage geeated by a sgle essto o a sgle fomato souce epesets a sgle ealzato of the stochastc pocess. It s called a sample fucto. 9

Stochastc Pocesses Itoducto cot. The set of all possble sample fuctos costtutes a esemble of sample fuctos o, equvaletly, the stochastc pocess Xt. I geeal, the umbe of sample fuctos the esemble s assumed to be etemely lage; ofte t s fte. Havg defed a stochastc pocess Xt as a esemble of sample fuctos, we may cosde the values of the pocess at ay set of tme stats t >t >t 3 > >t, whee s ay postve tege. t I geeal, the adom vaables X t X,,,...,, ae chaactezed statstcally by the jot PDF p,,...,. t t t 9

Stochastc Pocesses Statoay stochastc pocesses Cosde aothe set of adom vaables X X t + t, t + t,,...,, whee t s a abtay tme shft. These adom t + t t + t t + t vaables ae chaactezed by the jot PDF p,,...,.,,...,,,..., t t t t + t t + t t + t The jot PDFs of the adom vaables X ad X,,,...,, may o may ot be detcal. Whe they ae detcal,.e., whe p p fo all t ad all, t s sad to be statoay the stct sese. Whe the jot PDFs ae dffeet, the stochastc pocess s o-statoay. t t + t 9

Stochastc Pocesses Aveages fo a stochastc pocess ae called esemble aveages. The th momet of the adom vaable X s defed as : tme stat E X p t t t t I geeal, the value of the th momet wll deped o the t f the PDF of X Whe the pocess s statoay, t d depeds o t t p Theefoe, the PDF s depedet of tme, ad, as a cosequece, the th momet s depedet of tme. p t + t t. fo all t. 93

Stochastc Pocesses Two adom vaables: X X t,,. The coelato s measued by the jot momet: E X tx t t tp t, td td t Sce ths jot momet depeds o the tme stats t ad t, t s deoted by φt, t. φt, t s called the autocoelato fucto of the stochastc pocess. Fo a statoay stochastc pocess, the jot momet s: EX X φ t, t φ t t φτ Aveage powe the pocess Xt: φex t. t t t φ τ EX X EX X EX X φτ t t + τ t + τ t t t τ ' ' Eve Fucto 94

Stochastc Pocesses Wde-sese statoay WSS A wde-sese statoay pocess has the popety that the mea value of the pocess s depedet of tme a costat ad whee the autocoelato fucto satsfes the codto that φt,t φt -t. Wde-sese statoaty s a less stget codto tha stct-sese statoaty. If ot othewse specfed, ay subsequet dscusso whch coelato fuctos ae volved, the less stget codto wde-sese statoaty s mpled. 95

Stochastc Pocesses Auto-covaace fucto The auto-covaace fucto of a stochastc pocess s defed as: µ t { }, t E Xt mt Xt mt φ t, t mt mt Whe the pocess s statoay, the auto-covaace fucto smplfes to: µ t, t ϕτ m µτ Fo a Gaussa adom pocess, hghe-ode momets ca be epessed tems of fst ad secod momets. Cosequetly, a Gaussa adom pocess s completely chaactezed by ts fst two momets. fucto of tme dffeece 96

Stochastc Pocesses Aveages fo a Gaussa pocess Suppose that Xt s a Gaussa adom pocess. At tme stats tt,,,,, the adom vaables X t,,,,, ae jotly Gaussa wth mea values mt,,,,, ad auto-covaaces: If we deote the covaace mat wth elemets μt,t j by M ad the vecto of mea values by m, the jot PDF of the adom vaables X t,,,,, s gve by: j t t j µ t, t E X mt X mt, j,,,...,. j p,,..., ep m M m / / π det M If the Gaussa pocess s wde-sese statoay, t s also stct-sese statoay. 97

Stochastc Pocesses Aveages fo jot stochastc pocesses Let Xt ad Yt deote two stochastc pocesses ad let X t Xt,,,,, Y t j Yt j, j,,,m, epeset the adom vaables at tmes t >t >t 3 > >t, ad t >t >t 3 > >t m, espectvely. The two pocesses ae chaactezed statstcally by the jot PDF:,,...,,,,..., t t t t t t p y y y ' ' ' m The coss-coelato fucto of Xt ad Yt, deoted by φ y t,t, s defed as the jot momet: φ y t, t E X t Yt y p y The coss-covaace s: µ y t, t φy t, t m t my t t t t t t t d dy, 98

Stochastc Pocesses Aveages fo jot stochastc pocesses Whe the pocess ae jotly ad dvdually statoay, we have φ y t,t φ y t -t, ad μ y t,t μ y t -t : φ τ EXY EX Y EYX φ τ y t t + τ τ τ y ' ' ' ' t t t t The stochastc pocesses Xt ad Yt ae sad to be statstcally depedet f ad oly f : p,,...,, y ', y ',..., y ' p,,..., p y ', y ',..., y ' t t t t t m m fo all choces of t ad t ad fo all postve teges ad m. The pocesses ae sad to be ucoelated f t t t t t t t φ t, t E X E Y t, t y t t µ y 99

Stochastc Pocesses Comple-valued stochastc pocess A comple-valued stochastc pocess Zt s defed as: Z t X t + jy t whee Xt ad Yt ae stochastc pocesses. The jot PDF of the adom vaables Z t Zt,,,,, s gve by the jot PDF of the compoets X t, Y t,,,,. Thus, the PDF that chaactezes Z t,,,,, s: p,,...,, y, y,..., y t t t t t t The autocoelato fucto s defed as: φ zz t, t E Zt Z t E X t jy t X t jy t + + + ** { φ } t, t φyy t, t j φy t, t φy t, t

Stochastc Pocesses Aveages fo jot stochastc pocesses: Whe the pocesses Xt ad Yt ae jotly ad dvdually statoay, the autocoelato fucto of Zt becomes: φzz t, t φzz t t φzz τ φ ZZ τ φ * ZZ-τ because fom **: φzz t, t EZZ t t φ zz τ EZZ t ' ' ' ' t EZ Z EZZ τ φ t zz τ + τ t t t+ τ

Stochastc Pocesses Aveages fo jot stochastc pocesses: Suppose that ZtXt+jYt ad WtUt+jVt ae two comple-valued stochastc pocesses. The coss-coelato fuctos of Zt ad Wt s defed as: φ t, t EZ W E X t + jy t U t jv t + + zw t t { φ } u t, t φyv t, t j φyu t, t φv t, t Whe Xt, Yt,Ut ad Vt ae pawse-statoay, the coss-coelato fucto become fuctos of the tme dffeece. φ zw τ EZ t W ' ' ' ' t EZ W EWZ τ φ t wz τ + τ t t t+ τ

Powe Desty Spectum A sgal ca be classfed as havg ethe a fte ozeo aveage powe fte eegy o fte eegy. The fequecy cotet of a fte eegy sgal s obtaed as the Foue tasfom of the coespodg tme fucto. If the sgal s peodc, ts eegy s fte ad, cosequetly, ts Foue tasfom does ot est. The mechasm fo dealg wth peodc sgals s to epeset them a Foue sees. 3

Powe Desty Spectum A statoay stochastc pocess s a fte eegy sgal, ad, hece, ts Foue tasfom does ot est. The spectal chaactestc of a stochastc sgal s obtaed by computg the Foue tasfom of the autocoelato fucto. The dstbuto of powe wth fequecy s gve by the fucto: j τ Φ φ τ π f f e dτ The vese Foue tasfom elatoshp s: φ τ Φ f e jπfτ df 4

Powe Desty Spectum φ Φ f df E X t Sce φ epesets the aveage powe of the stochastc sgal, whch s the aea ude Φf, Φf s the dstbuto of powe as a fucto of fequecy. Φ f s called the powe desty spectum of the stochastc pocess. fom defto If the stochastc pocess s eal, φτ s eal ad eve, ad, hece P.94 Φ f s eal ad eve. easy to pove fom defto If the stochastc pocess s comple, φτφ*-τ ad Φ f s P. eal because: π τ ' Φ f φ τ e dτ φ τ e dτ ' * * j f * j π fτ' jπ fτ e dτ f φτ Φ 5

Powe Desty Spectum Coss-powe desty spectum Fo two jotly statoay stochastc pocesses Xt ad Yt, whch have a coss-coelato fucto φ y τ, the Foue tasfom s: j τ Φ f φ τ e π f dτ y Φ y f s called the coss-powe desty spectum. Φ * y * j πfτ * f φ τ e dτ φ τ φ y y If Xt ad Yt ae eal stochastc pocesses y jπfτ τ e dτ Φ f y y e jπfτ j f f π τ φ τ e dτ f Φ y f Φy f Φ Φ * y y y dτ 6

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Cosde a lea tme-vaat system flte that s chaactezed by ts mpulse espose ht o equvaletly, by ts fequecy espose H f, whee ht ad H f ae a Foue tasfom pa. Let t be the put sgal to the system ad let yt deote the output sgal. y t h τ tτ dτ Suppose that t s a sample fucto of a statoay stochastc pocess Xt. Sce covoluto s a lea opeato pefomed o the put sgal t, the epected value of the tegal s equal to the tegal of the epected value. my E Y t h τ E X tτ dτ τ τ m h d mh The mea value of the output pocess s a costat. 7 statoay

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal The autocoelato fucto of the output s: φ yy * t t E Y Y, t t h h [ ] * * β h α E X t β X t α * β h α φ t t + α β dαdβ dαdβ If the put pocess s statoay, the output s also statoay: yy * + φ τ h α h β φ τ α β dαdβ 8

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal The powe desty spectum of the output pocess s: j π fτ Φ yy f yy e d φ τ τ h α h β φ τ + α β e dτdαdβ * jπ fτ Φ f H f by makg τ τ+α-β The powe desty spectum of the output sgal s the poduct of the powe desty spectum of the put multpled by the magtude squaed of the fequecy espose of the system. 9

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Whe the autocoelato fucto φ yy τ s desed, t s usually ease to deteme the powe desty spectum Φ yy f ad the to compute the vese tasfom. φ j τ Φ π fτ yy yy f e df The aveage powe the output sgal s: Sce φ yy E Y t, we have: Φ j π fτ f H f e df φ yy Φ f H f df Φ f H f df vald fo ay H f.

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Suppose we let H f fo ay abtaly small teval f f f, ad H f outsde ths teval. The, we have: f f Φ f df Ths s possble f a oly f Φ f fo all f. Cocluso: Φ f fo all f.

Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Coss-coelato fucto betwee yt ad t φ y Fucto of t -t, [ ] * * t t E Y X h α E X t α X t t t h The stochastc pocesses α φ t t α dα φy t t X t ad Y t ae jotly statoay. dα Wth t -t τ, we have: φ y τ h α φ τ α dα I the fequecy doma, we have: Φ y f Φ f H f

Dscete-Tme Stochastc Sgals ad Systems Dscete-tme stochastc pocess X cosstg of a esemble of sample sequeces {} ae usually obtaed by ufomly samplg a cotuous-tme stochastc pocess. The mth momet of X s defed as: [ m] m X X p X The autocoelato sequece s: * φ, k E X X k The auto-covaace sequeces s: µ k φ, k E dx * X X p X, X k k dx dx k * E X E X, k 3

Dscete-Tme Stochastc Sgals ad Systems Fo a statoay pocess, we have φ,k φ-k, μ,k μ-k, ad µ k φ k m whee m EX s the mea value. A dscete-tme statoay pocess has fte eegy but a fte aveage powe, whch s gve as: E X φ The powe desty spectum fo the dscete-tme pocess s obtaed by computg the Foue tasfom of φ. Φ f φ e jπf 4

Dscete-Tme Stochastc Sgals ad Systems The vese tasfom elatoshp s: φ Φ f jπf The powe desty spectum Φ f s peodc wth a peod f p. I othe wods, Φ f+kφ f fo k,±,±,. The peodc popety s a chaactestc of the Foue tasfom of ay dscete-tme sequece. e df 5

Dscete-Tme Stochastc Sgals ad Systems Respose of a dscete-tme, lea tme-vaat system to a statoay stochastc put sgal. The system s chaactezed the tme doma by ts ut sample espose h ad the fequecy doma by the fequecy espose H f. H f h jπf The espose of the system to the statoay stochastc put sgal X s gve by the covoluto sum: e y h k k k 6

Dscete-Tme Stochastc Sgals ad Systems Respose of a dscete-tme, lea tme-vaat system to a statoay stochastc put sgal. The mea value of the output of the system s: k my E y h k E k k m h k mh whee H s the zeo fequecy [dect cuet DC] ga of the system. P. 7 7

Dscete-Tme Stochastc Sgals ad Systems The autocoelato sequece fo the output pocess s: φ yy k E y y + k j j h h j E + k j φ h h j k j+ By takg the Foue tasfom of φ yy k, we obta the coespodg fequecy doma elatoshp: f f H f Φ Φ yy P. 9 Φ yy f, Φ f, ad H f ae peodc fuctos of fequecy wth peod f p. 8

Cyclostatoay Pocesses Fo sgals that cay dgtal fomato, we ecoute stochastc pocesses wth statstcal aveages that ae peodc. Cosde a stochastc pocess of the fom: X t a g t T whee {a } s a dscete-tme sequece of adom vaables wth mea m a Ea fo all ad autocoelato sequece φ aa kea* a +k /. The sgal gt s detemstc. The sequece {a } epesets the dgtal fomato sequece that s tasmtted ove the commucato chael ad /T epesets the ate of tasmsso of the fomato symbols. 9

Cyclostatoay Pocesses The mea value s: E X t E a g t T a m g t T The mea s tme-vayg ad t s peodc wth peod T. The autocoelato fucto of Xt s: t+, t E X t+ X t φ τ τ m m aa m τ E a a g t T g t + mt m g t T g t τ mt φ +

Cyclostatoay Pocesses We obseve that φ t + τ + kt, t + kt φ t + τ, t fo k±,±,. Hece, the autocoelato fucto of Xt s also peodc wth peod T. Such a stochastc pocess s called cyclostatoay o peodcally statoay. Sce the autocoelato fucto depeds o both the vaables t ad τ, ts fequecy doma epesetato eques the use of a two-dmesoal Foue tasfom. The tme-aveage autocoelato fucto ove a sgle peod s defed as: T φ τ φ, T t + τ t dt T

Cyclostatoay Pocesses Thus, we elmate the te depedece by dealg wth the aveage autocoelato fucto. The Foue tasfom of φ τ yelds the aveage powe desty spectum of the cyclostatoay stochastc pocess. Ths appoach allows us to smply chaacteze cyclostatoay pocess the fequecy doma tems of the powe spectum. The powe desty spectum s: j π fτ Φ f e d φ τ τ