SCIENTIFIC INSTRUMENT NEWS. Introduction. Tsuyoshi Ebina

Similar documents
Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

NICKEL-63/59 IN WATER

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES

Title Revision No date DETERMINATION OF HEAVY METALS (ARSENIC, CADMIUM, LEAD AND MERCURY) IN COSMETIC PRODUCTS

METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY

Simultaneous Arsenic and Chromium Speciation by HPLC/ICP-MS in Environmental Waters

MASTERING THE VCE 2014 UNIT 3 CHEMISTRY STUDENT SOLUTIONS

The Determination of Toxic, Trace, and Essential Elements in Food Matrices using THGA Coupled with Longitudinal Zeeman Background Correction

Determination of 210 Pb and 210 Po in Water Samples

APC Spring Break Take-Home Exam Instructions

DETERMINATION OF TOTAL HALOGEN CONTENT IN HALOGEN-FREE FLUXES BY INDUCTIVELY COUPLED PLASMA AND SOME LIMITATIONS OF ION CHROMATOGRAPHY

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

Solved Examples On Electrochemistry

High Performance Liquid Chromatography

Expanded capabilities in ammonium and amine detection

Chemistry 20 Final Review Solutions Checklist Knowledge Key Terms Solutions

Chlorine, Free and Total, High Range

Name Period Date. Lab 10: Paper Chromatography

Analytical Chemistry

DISCLAIMER: This method:

Chem 321 Name Answer Key D. Miller

Formation of self-inhibiting copper(ii) nanoparticles in an autocatalytic Fenton-like reaction

Cation Exchange HPLC Columns

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers.

Chem Practice Exam Two (Chapters 19, 20 and 21)

Sodium Chloride - Analytical Standard

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

PAR Method Method to 2.0 mg/l Pb TNTplus 850

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9


Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Application of Selenium Speciation Analysis to Elucidate Limitations with Accepted Total Selenium Methods

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

EXPERIMENT 10: Precipitation Reactions

Pros and Cons of Water Analysis Methods

International Journal of Applied Science and Technology Vol. 7, No. 4, December 2017

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Chapter 4. The Major Classes of Chemical Reactions 4-1

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow

Rapid determination of five arsenic species in polished rice using HPLC-ICP-MS

Dionex IonPac AS28-Fast-4µm column

Prof. Dr. Biljana Škrbić, Jelena Živančev

Handbook of Inductively Coupled Plasma Spectrometry

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC)

Determination of Adsorbable Organic Halogen in Wastewater

Extra Questions. Chemical Formula IUPAC Name Ionic, Molecular, or Acid. ethanol. sulfurous acid. titanium (IV) oxide. gallium sulfate.

Dimethylphenol Method Method to mg/l NO 3 N or 1.00 to mg/l NO

ProPac WCX-10 Columns

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct

Determination of Trace Cations in Power Plant Waters Containing Morpholine

Chromatography Outline

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Reactions in Aqueous Solutions

Chlorine, Total. USEPA DPD Method 1 Method to mg/l as Cl 2 Chemkey Reagents. Test preparation. Before starting.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

4-1 Dissolution Reactions 4-2 Precipitation Reactions 4-3 Acids and Bases and Their Reactions 4-4 Oxidation-Reduction Reactions

Supporting information for:

Unit IV: Chemical Equations & Stoichiometry

CHEM 1364 Test #1 (Form A) Spring 2010 (Buckley)

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

DRAFT EAST AFRICAN STANDARD

Recommended Analytical Conditions and General Information for Flow Injection Mercury/Hydride Analyses Using the PerkinElmer FIAS-100/400

Introduction to Pharmaceutical Chemical Analysis

Chapter 4 Reactions in Aqueous Solution

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution.

Stoichiometry SUPPLEMENTAL PROBLEMS CHAPTER 12. 3Si(s) 2N 2 N 4. (g) 0 Si 3. (s) PO 4. the reaction. Cr(s) H 3. (aq) 0.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

Determination of trace anions in concentrated hydrofluoric acid

Unit 15 Solutions and Molarity

FLUDEOXYGLUCOSE ( 18 F) INJECTION: Final text for addition to The International Pharmacopoeia (January 2009)

1. How many significant digits are there in each of the following measurements? (½ mark each) a) ha b) s. c) d) 0.

DETECTING AND QUANTIFYING LEWISITE DEGRADATION PRODUCTS I N ENVIRONMENTAL SAMPLES USING ARSENIC SPECIATION*

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS

CHEMISTRY HIGHER LEVEL

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams.

Encapsulation of enzyme in metal ion-surfactant nanocomposites for

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

637. Thiamethoxam. HPLC method

Spectrophotometric Determination of Anionic Surfactants in River Water with Cationic Azo Dye by Solvent Extraction- Flow Injection Analysis

CHAPTER 9 CHEMICAL QUANTITIES

Section 4: Aqueous Reactions

Chromium, Total. Alkaline Hypobromite Oxidation Method 1 Method to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters)

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2

Stoichiometry Chapter 9 Practice Assessment B

Redox-Responsive Gel-Sol/Sol-Gel Transition in Poly(acrylic. acid) Aqueous Solution Containing Fe(III) Ions Switched by

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

Chapter 3 Stoichiometry

Chromazurol S Method Method to 0.50 mg/l Al TNTplus 848

Arsenic Speciation in Marine Sediments Samples from the Tsunami Area in Thailand

ASPARTAME. Not less than 98% and not more than 102% on the dried basis. White, odourless, crystalline powder, having a strong sweet taste

Peracetic Acid (PAA) and Hydrogen Peroxide (H 2 O 2 )

ICP-OES Application Note Number 35

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

Basic Digestion Principles

Transcription:

SCIENTIFIC INSTRUMENT NEWS 216 Vol. 7 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Article Valence-dependent separation and analysis of arsenic(iii) and arsenic(v) using high-performance liquid chromatography and hydride generation atomic absorption spectrophotometry. Applications to nonferrous metal refining processes Tsuyoshi Ebina Analysis Group Planning & Administration Department, Technology Group JX Nippon Mining and Metals Corporation 1. Introduction In the non-ferrous metal industry, there is significant demand for valence analysis of elements such as arsenic, antimony, and selenium. Co-precipitation with ferrous hydroxide is used to separate and remove arsenic from substances such as factory waste water produced during the copper refining process. However, whereas pentavalent arsenic As(V) is easy to remove, trivalent arsenic As(III) is not. Similarly, whereas quadrivalent selenium can be coprecipitated using ferrous hydroxide, hexavalent selenium can not. In addition, both the relative concentrations of arsenic and antimony and the valence of the ion species present in copper electrolyte solutions affect the formation of floating slime, which has been reported to degrade the quality of electrolytic copper and to influence its physical properties. For these reasons, a valence analysis is generally performed for arsenic, antimony, and selenium. However, apart from the case for selenium, which can be co-precipitated with ferrous hydroxide and analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES), there are as yet no simple analysis methods for these elements. The methods that are currently used for separation and analysis are highly time-consuming and involve complicated procedures such as solvent extraction and ion-exchange column separation. Given this state of affairs, there is strong demand for simple and rapid analysis methods. There are some possible candidates, including separation and measurement techniques based on high-performance liquid chromatography (HPLC) with reversed-phase 1-4) or ion-exchange columns. 5) In the present study, valencedependence separation was performed using C3 reversed-phase columns, which can be cleaned using organic solvents and are stable over long periods of time. The eluate from the columns was analyzed using hydride generation-atomic absorption spectrophotometry (HG-AAS), which is a well reported technique. 4-7) The equipment required for HPLC/ HG-AAS is relatively inexpensive and offers good sensitivity. Hitachi High-Technologies Corporation All rights reserved. 216[1]

2. Experiments 2-1 Experimental apparatus Figure 1 shows a schematic diagram of the experimental apparatus. The AAS measurements were performed using a polarized Zeeman atomic absorption spectrophotometer (Z-231, Hitachi High-Tech Science Corp.) with a quartz cell for heating. The HPLC analysis was carried out using a LaChrom Elite system (Hitachi High-Tech Science Corp.). Two C3-5 columns were used (Wakopak Navi, Wako Pure Chemical Industries, Ltd.), both of which had an inner diameter of 6 mm, but with lengths of 15 and 25 mm, and these were connected in series. The column temperature was 3 C. The hydride generation tube was a PFA fluorine resin tube with an inner diameter of 2 mm and a length of 6 m. The tube pump was a MINIPLUS 3 (Gilson, Inc.), and the mass-flow controller for the nitrogen carrier gas was a MQV95 (Yamatake Corp.) with a flow rate of 1 ml/min. Atomic absorption spectrophotometer HPLC pump C3 HPLC columns Hydride generation tube Injector Separator Eluent Fig.1 Schematic diagram of experimental apparatus. Tube pump HCl or HCl+HBr Nitrogen NaBH4+NaOH Waste water 2-2 Eluent The eluent consisted of an aqueous solution of 5 mm tetra-n-butylammonium hydroxide, 2 mm sulfuric acid and 4 mm citric acid. The eluent flow rate was 1 ml/min. 2-3 Acid and sodium tetrahydroborate solution for hydride generation When sample solutions contained no more than 1 mg/l of both copper and chromium, we mixed a 1.2 M HCl acid solution with the eluate from the HPLC columns. Because real samples may contain higher concentrations of metal ions, for the actual experiments, we used an acid solution of 6 M HCl and 1.8 M HBr to reduce the effect of metal ions. The sodium tetrahydroborate solution was a mixture of 1.5 (w/v)% sodium tetrahydroborate and.4 (w/v)% sodium hydroxide. Hitachi High-Technologies Corporation All rights reserved. 216[2]

2-4 Arsenic standard solutions To prepare As(III) standard solutions, 1 ml of a commercial 1, mg/l arsenic standard solution was mixed with 1 ml of a mixture of 4 g/l L-ascorbic acid and 2 g/l potassium iodide, and 8 ml of concentrated HCl, and the final solution was diluted to 1 ml. A similar procedure was used to prepare 1 mg/l and 1 mg/l solutions. To prepare As(V) standard solutions, the following procedure was used. 1 ml of a commercial 1, mg/l arsenic standard solution was added to 5 ml of a sodium hypochlorite solution and 5 ml of concentrated nitric acid, and diluted to 1 ml to obtain a 1 mg/l solution. To 1 ml of this solution, 2 ml of concentrated nitric acid was added, followed by dilution to 1 ml to prepare a 1 mg/l solution. In a similar manner, a 1 mg/l solution was prepared. 3. Composition of the eluent We first investigated the effect of the eluent composition on the relative retention times for As(III) and As(V). 3-1 Selection of quaternary ammonium ions Figure 2 shows the As(V) retention time for eluents containing quaternary ammonium ions with different numbers of carbon atoms. For tetramethylammonium (TMeA), the As(V) peak appears before the As(III) peak, whereas the reverse is true for tetraethylammonium (TEtA), tetra-n-propylammonium (TnPrA), and tetra-n-butylammonium (TnBtA). Since the greatest difference in retention time is seen for TnBtA, as was also reported by Le and Ma, 6) this was the eluent used in the present study. Retention time (minutes) 16 14 12 1 8 6 4 2 As (Ⅲ) As (Ⅴ) TMeA TEtA TnPrA TnBtA TMeA: Tetramethylammonium TEtA: Tetraethylammonium TnPrA: Tetra-n-propylammonium TnBtA: Tetra-n-butylammonium * Eluent: Citric acid: 3 mm; Quaternary ammonium ions: 1 mm, no ph adjustment. Fig.2 Dependence of retention time on quaternary ammonium ion species in eluent. Hitachi High-Technologies Corporation All rights reserved. 216[3]

3-2 Chromatograms for As (III) and As (V) Figure 3 shows chromatograms for As(III) and As(V) obtained under standard HPLC-HG-AAS measurement conditions. Here, the arsenic concentration was 2.8 mg/l. Although the retention time for As(V) is longer than that for As(III), and the peaks are clearly resolved, the peak for As(V) is higher and slightly narrower than that for As(III). The difference in retention time of approximately 4 minutes is sufficient to determine the concentration of both As(III) and As(V)..12.1 2.8 mg/l As(Ⅲ) 2.8 mg/l As(Ⅴ).8 Absorbance.6.4.2 -.2 2 4 6 8 1 12 14 16 18 2 Retention time (minutes) Fig.3 As(III) and As(V) chromatograms. 4. Improving the hydride generation efficiency for As(V) The efficiency of hydride generation for As(V) is typically reported to be about 4-6% that for As(III). For this reason, when using a method such as HG-AAS to determine the overall arsenic content, a pre-processing step must be performed to chemically reduce As(V) to yield As(III). 9) However, in the HPLC-based valence-dependent arsenic separation method for generating hydrides, it is not possible to perform this preliminary reduction step. For this reason, we investigated the possibility of improving the hydride generation efficiency for As(V) by varying the length of the hydride generation tube and the concentration of the citric acid and tartaric acid. In this investigation, we use a resistance tube instead of C3 columns in order to make the As(III) and As(V) peak shapes similar, and the flow-injection analysis (FIA) method was employed. Because with the HG-AAS technique, there is a nonlinear relation between the arsenic signal intensity and the gaseous arsenic concentration in the quartz cell at high arsenic concentrations, it is important for the peak shapes to be essentially identical in order to allow direct comparison of the area under the peaks. For this reason also, TnBtA was not added to the transport fluid used in the FIA method, since this would lead to As(V) being retained for slightly longer and the peak shape being changed. Hitachi High-Technologies Corporation All rights reserved. 216[4]

4-1 Effect of hydride generation tube length With an inner diameter of 2 mm and a length of 2 m for the hydride generation tube, we obtained a hydride generation efficiency of close to 9% for As(V). Further extending the length of the tube yielded an efficiency of 97% in the range 3-6 m. Based on these results, we set the length at 6 m to ensure a comfortable margin. 4-2 Effect of citric acid and tartaric acid concentrations Figure 4 shows the dependence of the peak area for As(III) and As(V) on the concentration of citric or tartaric acid in the transport fluid. Here, the mean peak area for As(III) is taken to be 1%. It can be seen that for both types of acid, the hydride generation efficiency for As(V) increases with acid concentration. However, since it was found that for As(V), significant tailing of the peak occurred during HPLC analysis for acid concentrations above 4 mm, the concentration of citric or tartaric acid was set at 4 mm. Peak area ratio (%) 11 1 9 8 7 Citric acid: normalized As(V) peak area Citric acid: normalized As(III) peak area Tartaric acid: normalized As(V) peak area Tartaric acid: normalized As(III) peak area 6 2 4 6 8 1 12 Fig.4 Effect of acid concentration. Acid concentration in transport fluid (mm) 5. Effect of interference due to metal ions When analyzing arsenic via hydride generation, it is known that the presence of copper, nickel, or other metal ions can reduce the accuracy of the results. 8,9) We therefore investigated the separation of Cu, Ni, Fe, Co, and Cr during HPLC analysis of As(III) and As(V). We found that these metal ions appeared before As(III), demonstrating successful separation from arsenic. Figure 5 shows the dependence of the peak area for As(III) and As(V) on the number of injections in the case where 5 g/l of Cu(II) ions is present in the sample solution. All values are normalized by the peak area for a single injection of 6 M HCl + 1.8 M HBr as the hydride generation acid, which corresponds to 1%. It can be seen that when the acid used is 1.2 M HCl, the peak area decreases significantly from the first injection, and the effect becomes larger with increasing number of injections. This also occurs for 6M HCl, although the decrease is smaller. In the case of 6 M HCl + 1.8 M HBr, no significant drop occurs until the third injection. Thus, although copper and arsenic can be successfully separated, the process becomes less efficient, and this effect is cumulative. In cases where such a decrease in hydride generation efficiency occurred, tubes to which sodium tetrahydroborate was added turned black due to the deposition of sediment. We take this as evidence that the sediment preferentially dissociates sodium tetrahydroborate, resulting in reduced hydride generation efficiency of arsenic. Hitachi High-Technologies Corporation All rights reserved. 216[5]

12 1 Peak area ratio (%) 8 6 4 2 As(Ⅲ)6 M HCl+1.8 M HBr As(V)6 M HCl+1.8 M HBr As(Ⅲ)6 M HCl As(V)6 M HCl As(Ⅲ)1.2 M HCl As(V)1.2 M HCl 1 repetition 2 3 4 5 6 Fig.5 Decrease in sensitivity with repeated injections of sample substance containing high concentration of copper. Next, for the case in which Cu, Ni, Fe, Co, and Cr are present in the sample, we examined the range of allowed concentrations required to ensure that the mean yield after 5 measurements lay in the range 97% to 13%. When the hydride generating acid was 6 M HCl + 1.8 M HBr, the allowed range was up to 3 g/l for Cu(II), Ni(III), Fe(II), Fe(III), and Co(II), as well as up to 3 g/l Cr(III) for As(III). For As(V), the allowed range was up to 1 g/l Cr(III). 6. Measurements of actual samples Figure 6 shows the measured peak area as a function of the arsenic concentration, before and after the improvements to the hydride generation efficiency for As(V) described in Section 4. It can be seen that the optimized citric acid concentration and hydrogenation tube length improve the detection sensitivity for As(V) almost to that for As(III). Figure 7 compares the total arsenic concentration measured using both HPLC/HG-AAS and ICP-OES for the approximately 1 samples we have measured so far, including the results for the conditions of the present study. When the sample solution was diluted and injected into the HPLC system, the ranges were to.55 g/l for Cu, to.1 M for sulfuric acid, and to.27 g/l for Fe. 1,6, 1,4, Peak area (arb. unit ms) 1,2, 1,, 8, 6, 4, 2, As (III) after improvement As (V) after improvement As (III) before improvement As (V) before improvement 2 4 6 8 1 12 As concentration (mg/l) Fig.6 Experimentally determined As(V) hydride generation efficiency before and after improvement. Hitachi High-Technologies Corporation All rights reserved. 216[6]

As shown in Figure 7, the combined As(III) and As(V) concentrations measured by HPLC/HG-AAS and ICP-OES are in good agreement. A similar comparison was performed for a sample containing only As(V), and good agreement was again found. It can therefore be concluded that the method proposed in the present study is ready to be used in practice. 1,5 ICP measurement of total As (mg/l) 1, 5 5 1, 1,5 HPLC-HG-AAS measurement of total As (mg/l) Fig.7 Combined As(III) and As(V) concentrations measured by HPLC/HG-AAS and ICP. 7. Conclusions For the separation and analysis of As(III) and As(V) by HPLC/HG-AAS, the effect of the eluent composition and the concentration of the acid used to generate hydrides was investigated. Based on the results, a method was developed for performing stable measurements over long periods of time, even for samples containing high concentrations of sulfuric acid, copper, or organic decomposition products, which are commonly encountered in the non-ferrous refining industry. In addition, by adding an oxycarboxylic acid such as citric acid to the HPLC eluent, and by optimizing the hydrogenation tube and the concentration of sodium tetrahydroborate, the sensitivity for As(V) detection was increased to about 98-1% of that for As(III), compared to the original value of around 4-6%. In view of these accomplishments, we believe that we have developed an analytical method with improved quantitative accuracy for As(V) evaluation. Hitachi High-Technologies Corporation All rights reserved. 216[7]

References 1)T. Narukawa, T. Kuroiwa, T. Yarita, K. Chiba, Appl. Organometal. Chem., 2, 565-572(26). 2)Y. Morita, T. Kobayashi, T. Kuroiwa, T. Narukawa, Talanta, 73, 81-86(27). 3)K. JIN, S. Kobayashi, S. Takeuchi, K. Tatsumi, K. Miura, T. Narita, Rep. Hokkaido Inst. Pub. Health, 62, 35-41 (212). 4)X. Chun, W. R. Cullen, K. J. Reimer, Talanta, 4, 495-52(1994). 5)B. A. Manning, D. A. Martens, Environmental Science & Technology, 31, 171-177(1997). 6)X. C. Le and M. Ma, Anal. Chem., 7, 1926-1933(1998). 7)Z. Gong, X. Lu, M. Ma, C. Watt, X. C. Le, Talanta, 58, 77-96(22). 8)JIS K 12 213; Testing methods for industrial wastewater 61. arsenic (As). 9)H. Narasaki, Determination of Hydride Forming Elements by Hydride Generation Atomic Spectrometry, CACS FORUM, 15, 9-19(1995). Acknowledgements This work was completed with assistance from Hideyuki Sakamoto and Toshihiro Shirasaki of Hitachi High-Tech Science and from Hiroshi Kashimura and Kenichi Kamimura of JX Nippon Mining and Metals Corporation. We extend to them our gratitude. Hitachi High-Technologies Corporation All rights reserved. 216[8]