Topic(s): Moon, Topography, Metrics, Geography, Space Science, Longitude, Latitude, Map skills

Similar documents
LUNAR OBSERVING. What will you learn in this lab?

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

Record of Observation for Explore the Universe Observing Certificate RASC

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

Map Skills Lesson 1. Materials: maps, pencils, Lesson 1 Worksheet, strips of paper, grid paper

Planetary Science Unit Map Grade 8

Exploring the Lunar Surface

THE SUN-EARTH-MOON SYSTEM

DRAWING YOUR CONTINENT

Shapes in the Sky. A Planetarium Lab Lesson and Classroom Activities for Grades K-1

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

ESSENTIAL QUESTION How can we use the Mars Map and photographs of Mars to learn about the geologic history of the planet?

Highs and Lows Floods and Flows

COORDINATE SYSTEMS: LOCATING YOURSELF ON A SPHERE

MOON MADNESS SCIENCE GRADES 3-5 JOYCE TATE & NANCY FARLEY. TIME ALLOTMENT: Two 45-minute classes (and one complete cycle of moon phases).

Strange New Planet. Time Budget: 1 hour

Passwords. ScienceVocabulary

Mapping Earth. How are Earth s surface features measured and modeled?

ACTIVITY CLASSROOM. Observe the Moon's Phases. General Information

Activity Plotting Earthquake Epicenters an activity for seismic discovery

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

V. The Moon s Motion and Phases

Planets and Moons. unit overview

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

OBSERVE AND REPORT. Overview: Objectives: Targeted Alaska Grade Level Expectations: Vocabulary: Materials: Whole Picture:

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

GPS Measurement Protocol

locate the world s countries, using maps to focus on Europe (including the location of

Prentice Hall Science Explorer - Georgia Earth Science 2009

Unit 6 Lesson 2 What Are Moon Phases? Copyright Houghton Mifflin Harcourt Publishing Company

The Magic School Bus on the Ocean Floor

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Earth s Moon. Origin and Properties of the Moon. The Moon s Motions

Overview: In this activity, students will learn how the moon affects ocean tides and also will create and interpret graphs of regional tide data.

Lesson 2 The Inner Planets

The Sun Earth Moon System

Science4. Student s book. Natural

EARTHS SHAPE AND POLARIS PRACTICE 2017

5E's. View the video clip:

MAPPING MARS TEACHER PAGE

8 th Grade Earth and Space Science Megan Seivert, Virginia Standards of Learning Connections: Lesson Summary:

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY

18.1 Earth and Its Moon Earth s shape and orbit Earth s shape Earth s orbit around the Sun

22. What came out of the cracks or fissures?

Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky Ages on Mars. Martian Surface Age Exploration

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats

LET S GO ON A ROAD TRIP

THE EARTH AND ITS REPRESENTATION

Inquiry Based Instruction Unit. Virginia Kromhout

Canadian Explorers. Learning object La Vérendyre map

1.2: Observing the Surfaces of Mars and Earth

Planet Power. Of all the objects in our solar system, eight match these requirements: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, & Neptune

The Moon. A look at our nearest neighbor in Space! Free powerpoints at

Earth s Time Zones. Time Zones In The United States

Thank you for your purchase!

SUN FACTS AND STATS. Section 1: Some Interesting Facts about the Sun 1. What elements make up the Sun?

Investigating Factors that Influence Climate

crust meteorites crater

Illustrate It! You will need to set out colored pencil and markers at this station.

Earth Science: Earth's Place in the Universe Unit 2: The Moon

What Objects Are Part of the Solar System?

Infinity Express. Kendall Planetarium. Planetarium Show Teacher s Guide PROGRAM OUTLINE

Learning Lab Seeing the World through Satellites Eyes

Science Practice Astronomy (AstronomyJSuber)

USING YOUR FIELD GUIDE AND STAR CHARTS PRELAB

Project Moonwalkers. European Association. for Astronomy Education

Year 7 GEOGRAPHY Skills Booklet Assessment Task

Moon 101. By: Seacrest School Moon Crew Blake Werab David Prue

Plotting Earthquake Epicenters*

Chapter: The Earth-Moon-Sun System

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth

Name Date Class. Earth in Space

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

Map Makers 2nd Grade

Map Reading: Grades 4 & 5

From the Educator s Corner at LeoScienceLab.com

Super Quiz. 4 TH Grade

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Boy Scout Badge Workshop ASTRONOMY

Georgia Performance Standards Framework for Earth and Moon dancing with our Star 6 TH GRADE

Phases of the Moon. Phenomenon: The appearance of the moon changes every night. 1. What questions do you have about this phenomenon?

Southington Public Schools Curriculum Map Subject: Science Grade: 6

Clouds & Mission for NASA

Grading Summary: Questions 1: 22 points. Question 2: 12 points. Question 3: 12 points. Question 4: 18 points. Question 5: 36 points.

refractors satellite electromagnetic radiation

Thanks. You Might Also Like. I look forward helping you focus your instruction and save time prepping.

ROVERQUEST: Greetings from Gusev

7.RP.A.2 Recognize and represent proportional relationships between quantities.

Latitude/Longitude: Message in a Bottle

Space: Cross-Curricular Topic : Year 5/6

The Moon s radius is about 1100 miles. The mass of the Moon is 7.3x10 22 kg

UC Irvine FOCUS! 5 E Lesson Plan

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Latitude and Longitude:

Trends Forecasting. Overview: Objectives: GLEs Addressed: Materials: Activity Procedure:

Name Date Class. a. High elevation and high relief b. High elevation and level surface c. Flat land and low relief

Signature: Name: Banner ID#:

EXERCISE 2 (16 POINTS): LUNAR EVOLUTION & APOLLO EXPLORATION

The Sun-Earth-Moon System. Learning Guide. Visit for Online Learning Resources. Copyright NewPath Learning

Transcription:

Title: Moon Maneuvers Author: Wynne Clarke Anderson Subject(s): Science, Mathematics Topic(s): Moon, Topography, Metrics, Geography, Space Science, Longitude, Latitude, Map skills Grade/Level: 5 8 Objective: By the end of this lesson, students will be able to: use longitude and latitude coordinates to locate and plot Apollo Moon Mission landing sites. read a large shaded relief map to locate designated areas on the map that include physical lunar features. plot on a grid designated areas and a variety of physical lunar features. become familiar with the Apollo Mission time lines, crews, and landing sites. plan and plot a moon trip using a Moon Relief Map for the Lunar Rover using specific guidelines. (The goal is to plot a course that is the shortest trip time.) use math functions to calculate the shortest trip time. use metric conversions for length. Summary of Lesson: Students locate and plot Apollo Moon Missions and learn about a variety of lunar surface features by plotting and planning a moon trip that will visit designated lunar sites. Time Allotment: 1 hour 45 minutes Procedures/Instructions: Vocabulary: Mare: singular, means sea; Maria is the plural. They are the low plains (lowlands) on the Moon that appear dark and smooth. They were formed by ancient lava flows.

Highland areas are the mountain areas on the surface of the Moon. Impact crater is a circular depression in the ground caused by meteoroids and asteroids hitting the surface of the Moon. Frigoris (Latin) means Cold Imbrium means Rains Nubium means Clouds Humorum means Moisture Procellarum means Storms Mons means Mountains Angular distance on the Earthʹs surface, measured east or west from the prime meridian at Greenwich, England, to the meridian passing through a position, expressed in degrees (or hours), minutes, and seconds. The angular distance north or south of the Earthʹs equator, measured in degrees along a meridian, as on a map or globe. Part One: Students work in pairs with 4 students per table. Teacher Brief discussion of the Moon. The Moon is the brightest object in our night sky, it is Earthʹs only satellite, the Moonʹs gravity pulling on Earth causes daily ocean tides, it was probably formed by a Mars size meteoroid hitting Earth when it was newly formed, there is no atmosphere on the Moon, so there are temperature extremes, and it is the only body in the Solar System that humans have actually visited. Encourage students to share in the discussion and add information that they know about the Moon (eclipses, phases, mythology). Today you are going to investigate Apollo Mission landing sites and explore different places on the Moon using a map. Pass out the Moon Maps with the Apollo Site locations. Instruct students to locate and then plot with an X the landing sites on the grid paper. Instruct students to write the Longitude and Latitude in degrees next to the number/letter location. Reinforce Longitude and Latitude with students before they begin their map work. If you have a computer lab or computers in your classroom:

Go to the Google Moon site and locate and learn about the crew of Apollo Missions http://moon.google.com Go to the website where students try to land a Lunar Lander: http://spaceevent.com/kid_activities/games.asp Closure: Show a short clip of early Apollo Missions from videotape or the internet. http://history.nasa.gov/40thann/videos.htm http://www.hq.nasa.gov/alsj/a11/video11.html Check student maps for locations, allow students to share some of the things they learned. Part Two: Teacher explains: Next you and your partner must plan a lunar excursion to investigate eight different areas of the Moon. The trip must begin and end at Hercules Crater. Remember, you must keep your trip time to a minimum. Place the large scale Moon Relief Maps, the Moon Spec Sheet, the Moon Data Log, and other supplies on the tables. Instruct students to follow the direction given on the spec sheet and data log keeping in mind the goal is to calculate the shortest trip time visiting all sites: 1. Locate your destinations on the relief map. 2. Complete the Lunar Site Location table on the data log. 3. Plot the lunar sites on the grid paper. 4. Plan the shortest trip time back to Hercules Crater. 5. Complete the Lunar Excursion Time table on the data log. The Lunar Vehicle information below is based on the following: 1mm = 5km = The map scale 25km /hour is the traveling speed of the vehicle 10 hrs = How far the vehicle will travel on 1 full battery charge 10 hrs = The amount of time it takes for the battery to recharge 1 = Replacement battery The Lunar Vehicle must visit the following Lunar Sites: 1. Start at Hercules Crater 42º E 48º W 19cm = 950km = 38 hours

2. Alpine Valley 2º W 46º N 13cm = 650km= 26hours 3. Archimedes Crater 3º W 29 N 13.5cm = 675km = 27hrs 4. Copernicus Crater 20º W 10º N 10 cm = 500km = 20hrs 5. Apennine Mountains 15º E 24ºN 11cm = 550km = 22hrs 6. Sea of Serenity 20º E 23º N 23cm = 1150km = 46hrs 7. Rupes Altia 25º E 25º S 26cm = 1300km = 52hrs 8. Sea of Crisis 60º E 14ºE 12.5cm = 625 = 25hrs 9. Apollo 17 Landing Site 38º E 27ºN 13cm = 650km = 26hrs 10. Home Landing site Hercules Crater 42º E 48º W Instructional Materials: Pencils Calculators Grid paper 1 per 2 students Set of colored pencils 1 set per 2 students Miniature post it notes Scratch paper for calculations Metric rulers Moon Maneuvers Student Sheet Moon Maneuvers Student Data Log USGS Near Side Moon Relief Maps 1 per table of 4 students http://www.lunarrepublic.com/atlas/index.shtml http://astrogeology.usgs.gov/projects/browsethesolarsystem/moon.html Lunar Landing Sites maps 1 per 2 students http://moon.google.com Moon Maps with areas labeled 1 per 2 students http://www.adlerplanetarium.org/cyberspace/moon/ http://www.oarval.org/moonmapen.htm Additional Resources (Web Links, File Attachments): http://www.adlerplanetarium.org/cyberspace/moon/ http://spaceevent.com/kid_activities/games.asp

National Science or Mathematics Standards: Science Science as Inquiry CONTENT STANDARD A: As a result of activities in grades 5 8, all students should develop Abilities necessary to do scientific inquiry Use appropriate tools and techniques to gather, analyze, and interpret data. Develop descriptions, explanations, predictions, and models using evidence. Understandings about scientific inquiry Earth and Space Science CONTENT STANDARD D: As a result of activities in grades 5 8, all students should develop an understanding of Earth in the solar system Structure of the earth systems Mathematics Number and Operations Standard Instructional programs from pre kindergarten through grade 12 should enable all students to Understand numbers, ways of representing numbers, relationships among numbers, and number systems Compute fluently and make reasonable estimates in problem solving Geometry Standard Instructional programs from pre kindergarten through grade 12 should enable all students to Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments about geometric relationships Assessment Plan:

Group interview: The teacher will spend time with each group to ask specific questions about the proposed Moon trip. Examples: Explain how you arrived at the total trip time on the Data Log and in your own words describe what longitude measures on a map. Transfer and Reflection: Students share with another group their proposed Moon trip and justify their Spec Sheet and Data Log to the other group.

QuickTime and a TIFF (LZW) decompressor are needed to see this picture. Moon Maneuvers Student Sheet keep your trip time to a minimum. Mission Objective: You and your crew must plan a lunar excursion to investigate eight different areas of the Moon. You must begin and end your trip at Hercules Crater. Remember, you must The Lunar Vehicle must travel to the following lunar sites: Procedure: Alpine Valley Rupes Altai Apennine Mountains Apollo 17 Landing Site Archimedes Crater Copernicus Crater Sea of Crisis Sea of Serenity 1. Locate your destinations on the relief map. 2. Complete the Lunar Site Location table on the data log. 3. Plot the lunar sites on the grid paper. 4. Plan the shortest trip time back to Hercules Crater. 5. Complete the Lunar Excursion Time table on the data log. The following information is needed to calculate the ʺTotal Timeʺ of your trip: 1 cm = 10 mm

Map Scale: 1 mm = 5 km The Lunar Vehicle will travel at a speed of 25 km /hour. The Lunar Vehicle can travel for 10 hours on a fully charged battery. It will take 10 hours for the battery to recharge. ʺTotal Timeʺ includes travel time and charge time.

Moon Maneuvers Student Data Log Lunar Site Location Lunar Site Latitude Longitude Hercules Crater Alpine Valley Rupes Altia Apennine Mountains Apollo 17 Landing Site Archimedes Crater Copernicus Crater Sea of Crisis Sea of Serenity Lunar Excursion Time Trip Site 1. Hercules Crater Grid Distance (cm) Actual Distance (km) Travel Time (hours) Total Time (hours) 2. 3. 4. 5. 6. 7. 8. 9. 10. Hercules Crater

Total Trip Time